Free Access
Volume 20, Number 3, July-September 2014
Page(s) 633 - 661
Published online 21 May 2014
  1. S.P. Banks and T. Cimen, Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. System Control Lett. 53 (2004) 327–346. [CrossRef] [Google Scholar]
  2. S.P. Banks and T. Cimen, Optimal control of nonlinear systems, Optimization and Control with Applications. In vol. 96 of Appl. Optim. Springer, New York (2005) 353–367. [Google Scholar]
  3. H.T. Banks, B.M. Lewis and H.T. Tran, Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach. Comput. Optim. Appl. 37 (2007) 177–218. [CrossRef] [Google Scholar]
  4. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (1997). [Google Scholar]
  5. M. Bardi and F. DaLio, On the Bellman equation for some unbounded control problems. Nonlinear Differ. Eqs. Appl. 4 (1997) 491–510. [CrossRef] [MathSciNet] [Google Scholar]
  6. L.M. Benveniste and J.A. Scheinkman, On the differentiability of the value function in dynamic models of economics. Econometrica 47 (1979) 727–732. [CrossRef] [Google Scholar]
  7. L.D. Berkovitz, Optimal Control Theory. Springer-Verlag, New York (1974). [Google Scholar]
  8. J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer, New York (2000). [Google Scholar]
  9. P. Cannarsa and H. Frankowska, Some characterizatins of optimal trajecotries in control theory. SIAM J. Control Optim. 29 (1991) 1322–1347. [CrossRef] [MathSciNet] [Google Scholar]
  10. T. Cimen, State-dependent Riccati equation (SDRE) control: a survey. Proc. 17th World Congress IFAC (2008) 3761–3775. [Google Scholar]
  11. H. Frankowska, Value Function in Optimal Control, Mathematical Control Theory, Part 1, 2 (2001) 516–653. [Google Scholar]
  12. T. Hildebrandt and L. Graves, Implicit functions and their differentials in general analysis. Trans. Amer. Math. Soc. 29 (1927) 127–153. [CrossRef] [MathSciNet] [Google Scholar]
  13. Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations. Probab. Theory Rel. Fields 103 (1995) 273–283. [Google Scholar]
  14. R.E. Kalman, Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5 (1960) 102–119. [MathSciNet] [Google Scholar]
  15. J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications. Vol. 1702 of Lect. Notes Math. Springer-Verlag (1999). [Google Scholar]
  16. H. Qiu and J. Yong, Hamilton-Jacobi equations and two-person zero-sum differential games with unbounded controls. ESAIM: COCV 19 (2013) 404–437. [CrossRef] [EDP Sciences] [Google Scholar]
  17. J.P. Rincón-Zapatero and M.S. Santos, Differentiability of the value function in continuous-time economic models. J. Math. Anal. Appl. 394 (2012) 305–323. [CrossRef] [Google Scholar]
  18. J. Yong, Finding adapted solutions of forward-backward stochastic differential equations – method of continuation, Probab. Theory Rel. Fields 107 (1997) 537–572. [Google Scholar]
  19. J. Yong, Stochastic optimal control and forward-backward stochastic differential equations. Comput. Appl. Math. 21 (2002) 369–403. [MathSciNet] [Google Scholar]
  20. J. Yong, Forward backward stochastic differential equations with mixed initial and terminal conditions. Trans. AMS 362 (2010) 1047–1096. [Google Scholar]
  21. J. Yong and X.Y. Zhou, Stochastic Control: Hamiltonian Systems and HJB Equations. Springer-Verlag (1999). [Google Scholar]
  22. Y. You, A nonquadratic Bolza problem and a quasi-Riccati equation for distributed parameter systems. SIAM J. Control Optim. 25 (1987) 905–920. [CrossRef] [MathSciNet] [Google Scholar]
  23. Y. You, Synthesis of time-variant optimal control with nonquadratic criteria. J. Math. Anal. Appl. 209 (1997) 662–682. [CrossRef] [Google Scholar]
  24. E. Zeidler, Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems. Springer-Verlag, New York (1986) 150–151. [Google Scholar]
  25. E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators. Springer-Verlag, New York (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.