Free Access
Issue
ESAIM: COCV
Volume 20, Number 3, July-September 2014
Page(s) 662 - 703
DOI https://doi.org/10.1051/cocv/2013079
Published online 27 May 2014
  1. S.L. Altmann, Rotations, quaternions, and double groups. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1986). [Google Scholar]
  2. A. Astolfi, D. Chhabra and R. Ortega, Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems Control Lett. 45 (2002) 193–206. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden and G. Sánchez de Alvarez, Stabilization of rigid body dynamics by internal and external torques. Automatica J. IFAC 28 (1992) 745–756. [CrossRef] [MathSciNet] [Google Scholar]
  4. T. Chambrion and M. Sigalotti, Tracking control for an ellipsoidal submarine driven by Kirchhoff’s laws. IEEE Trans. Automat. Control 53 (2008) 339–349. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement. Inverse Problems 24 (2008) 045001, 18. [Google Scholar]
  6. C. Conca, M. Malik and A. Munnier, Detection of a moving rigid body in a perfect fluid. Inverse Problems 26 (2010) 095010. [Google Scholar]
  7. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [Google Scholar]
  8. J.-M. Coron, Control and nonlinearity, vol. 136. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  9. T.I. Fossen, Guidance and Control of Ocean Vehicles. Wiley, New York (1994). [Google Scholar]
  10. T.I. Fossen, A nonlinear unified state-space model for ship maneuvering and control in a seaway. Int. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005) 2717–2746. [Google Scholar]
  11. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. [CrossRef] [EDP Sciences] [Google Scholar]
  12. O. Glass and L. Rosier, On the control of the motion of a boat. Math. Models Methods Appl. Sci. 23 (2013) 617–670. [CrossRef] [Google Scholar]
  13. P. Hartman, Ordinary differential equations, 2nd edn. Birkhäuser Boston, Mass. (1982). [Google Scholar]
  14. V.I. Judovič. A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region. Mat. Sb. (N.S.) 64 (1964) 562–588. [MathSciNet] [Google Scholar]
  15. A.V. Kazhikhov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. Prikl. Matem. Mekhan. 44 (1980) 947–950. [Google Scholar]
  16. K. Kikuchi, The existence and uniqueness of nonstationary ideal incompressible flow in exterior domains in R3. J. Math. Soc. Japan 38 (1986) 575–598. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Krieg, P. Klein, R. Hodgkinson and K. Mohseni, A hybrid class underwater vehicle: Bioinspired propulsion, embedded system, and acoustic communication and localization system. Marine Tech. Soc. J. 45 (2001) 153–164. [CrossRef] [Google Scholar]
  18. H. Lamb, Hydrodynamics. Cambridge Mathematical Library, 6th edition. Cambridge University Press, Cambridge (1993). With a foreword by R.A. Caflisch [Russel E. Caflisch]. [Google Scholar]
  19. N.E. Leonard, Stability of a bottom-heavy underwater vehicle. Automatica J. IFAC 33 (1997) 331–346. [CrossRef] [MathSciNet] [Google Scholar]
  20. N.E. Leonard and J.E. Marsden, Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry. Phys. D 105 (1997) 130–162. [CrossRef] [MathSciNet] [Google Scholar]
  21. S.P. Novikov and I. Shmel’tser, Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik-Shnirel’man-Morse theory. I. Funktsional. Anal. i Prilozhen. 15 (1981) 54–66. [MathSciNet] [Google Scholar]
  22. J.H. Ortega, L. Rosier and T. Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid. ESAIM: M2AN 39 (2005) 79–108. [CrossRef] [EDP Sciences] [Google Scholar]
  23. J.H. Ortega, L. Rosier and T. Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 139–165. [Google Scholar]
  24. C. Rosier and L. Rosier, Smooth solutions for the motion of a ball in an incompressible perfect fluid. J. Funct. Anal. 256 (2009) 1618–1641. [CrossRef] [MathSciNet] [Google Scholar]
  25. E.D. Sontag, Mathematical control theory, vol. 6. Texts in Applied Mathematics. Springer-Verlag, New York (1990). Deterministic finite-dimensional systems. [Google Scholar]
  26. B.L. Stevens and F.L. Lewis, Aircraft Control and Simulation. John Wiley & Sons, Inc., Hoboken, New Jersey (2003). [Google Scholar]
  27. Y. Wang and A. Zang, Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid. J. Differ. Eqs. 252 (2012) 4259–4288. [Google Scholar]
  28. Y. Xu, Z. Ren and K. Mohseni, Lateral line inspired pressure feedforward for autonomous underwater vehicle control. In Proc. of IEEE/RSJ IROS Workshop Robot. Environmental Monitor (2012) 1–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.