Free Access
Volume 20, Number 3, July-September 2014
Page(s) 823 - 839
Published online 05 June 2014
  1. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey. Math. Control Relat. Fields 1 (2011) 267–306. [CrossRef] [MathSciNet] [Google Scholar]
  2. O. Bodart, M. González-Burgos and R. Pérez-Garcia, A local result on insensitizing controls for a semilinear heat equation with nonlinear boundary Fourier conditions. SIAM J. Control Optim. 43 (2004) 955–969. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations. Amer. J. Math. 80 (1958) 16–36. [Google Scholar]
  4. T. Carleman, Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat. Astr. Fys. 26 (1939) 1–9. [Google Scholar]
  5. X. Fu, A weighted identity for partial differential operator of second order and its applications. C.R. Math. Acad. Sci. Paris 342 (2006) 579–584. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations. In vol. 34, Lect. Notes Ser. Seoul National University, Seoul, Korea (1996). [Google Scholar]
  7. L. Hörmander, Linear Partial Differential Operators, in vol. 116. Die Grundlehren der mathematischen Wissenschaften. Academic Press, New York (1963). [Google Scholar]
  8. O. Yu. Imanuvilov and J.P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems. Int. Math. Res. Not. 16 (2003) 883–913. [CrossRef] [Google Scholar]
  9. O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39 (2003) 227–274. [CrossRef] [MathSciNet] [Google Scholar]
  10. N.V. Krylov, A Wn2-theory of the Dirichlet problem for SPDEs in general smooth domains. Prob. Theory Related Fields 98 (1994) 389–421. [CrossRef] [Google Scholar]
  11. X. Li and J. Yong, Optimal Control Theory for Infinite-Dimensional Systems. Birkhäuser Boston, Inc., Boston (1995). [Google Scholar]
  12. J.-L. Lions, Quelques notions dans l’analyse et le contrôle de systèmes à données incomplètes, Proc. of the XIth Congress on Differential Equations and Applications/First Congress on Appl. Math. Univ. Málaga, Málaga (1990) 43–54. [Google Scholar]
  13. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, vol. 170. Springer-Verlag, New York-Berlin (1971). [Google Scholar]
  14. X. Liu, Insensitizing controls for a class of quasilinear parabolic equations. J. Differ. Eqs. 253 (2012) 1287–1316. [CrossRef] [Google Scholar]
  15. X. Liu and X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations. SIAM J. Control Optim. 50 (2012) 2046–2064. [CrossRef] [MathSciNet] [Google Scholar]
  16. Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift. J. Funct. Anal. 260 (2011) 832–851. [CrossRef] [MathSciNet] [Google Scholar]
  17. Q. Lü, Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems. Inverse Problems 28 (2012) 045008. [CrossRef] [MathSciNet] [Google Scholar]
  18. Q. Lü and X. Zhang, Carleman estimates for parabolic operators with discontinuous and anisotropic diffusion coefficients, an elementary approach. In preparation. [Google Scholar]
  19. Q. Lü and X. Zhang, General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions, arXiv:1204.3275. [Google Scholar]
  20. J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE, with applications. Stochastic Process. Appl. 70 (1997) 59–84. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes. Stochastic 3 (1979) 127–167. [Google Scholar]
  22. J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differ. Eqs. 66 (1987) 118–139. [Google Scholar]
  23. S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations. SIAM J. Control Optim. 48 (2009) 2191–2216. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. de Teresa, Insensitizing controls for a semilinear heat equation. Commun. Partial Differ. Eqs. 25 (2000) 39–72. [Google Scholar]
  25. Y. Yan and F. Sun, Insensitizing controls for a forward stochastic heat equation. J. Math. Anal. Appl. 384 (2011) 138–150. [CrossRef] [MathSciNet] [Google Scholar]
  26. X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations. Proc. of the Int. Congress of Math., Vol. IV. Hyderabad, India (2010) 3008–3034. [Google Scholar]
  27. X. Zhou, A duality analysis on stochastic partial differential equations. J. Funct. Anal. 103 (1992) 275–293. [CrossRef] [MathSciNet] [Google Scholar]
  28. X. Zhou, On the necessary conditions of optimal controls for stochastic partial differential equations. SIAM J. Control Optim. 31 (1993) 1462–1478. [CrossRef] [MathSciNet] [Google Scholar]
  29. E. Zuazua, Controllability and Observability of Partial Differential Equations: Some results and open problems. Handbook of Differential Equations: Evol. Differ. Eqs., vol. 3. Elsevier Science (2006) 527–621. [Google Scholar]
  30. C. Zuily, Uniqueness and Non-Uniqueness in the Cauchy Problem. Birkhäuser Verlag, Boston-Basel-Stuttgart (1983). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.