Free Access
Volume 20, Number 3, July-September 2014
Page(s) 840 - 863
Published online 05 June 2014
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. V.K. Andreev and I.I. Ryzhkov, Symmetry classification and exact solutions of the thermal diffusion equations. Differ. Eqs. 41 (2005) 538–547. [CrossRef] [Google Scholar]
  3. F. Ben Belgacem, C. Bernardi and H. El Fekih, Dirichlet boundary control for a parabolic equation with final observation: A space-time mixed formulation and penalization. Asympotic Anal. 71 (2011) 101–121. [Google Scholar]
  4. F. Ben Belgacem, H. El Fekih and J.P. Raymond, A penalized approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions. Asymptotic Anal. 34 (2003) 121–136. [Google Scholar]
  5. L. Bergman and M.T. Hyun, Simulation of two dimensional thermosolutal convection in liquid metals induced by horizontal temperature and species gradients. Int. J. Heat Mass Transfer 39 (1996) 2883. [CrossRef] [Google Scholar]
  6. J.A. Burns, B.B. King and D. Rubio, Feedback control of thermal fluid using state estimation, Flow Control and Optimization. Int. J. Comput. Fluid Dynamics 11 (1998) 93–112. [CrossRef] [Google Scholar]
  7. E. Casas and M. Mateos and J.P. Raymond, Penalization of Dirichlet optimal control problems, ESAIM: COCV 15 (2009) 782–809. [Google Scholar]
  8. H.O. Fattorini and S.S. Sritharan, Existence of optimal controls for viscous flow problems. Proc. Royal Soc. London, Ser. A 439 (1992) 81–102. [Google Scholar]
  9. A. Fursikov, M.D. Gunzburger and L.S. Hou, Boundary value problems and optimal boundary control for the Navier–Stokes system: the two-dimensional case. SIAM J. Control Optim. 36 (1998) 852–894. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Gad-el-Hak, A. Pollard and J. P. Bonnet, Flow Control, Fundamentals and Practices. Lect. Notes Phys. Springer, Berlin (1998). [Google Scholar]
  11. E. Gagliardo, Proprieta di alcune classi di funzioni in piu variabili. Ricerche. Mat. 7 (1958) 102–137 [MathSciNet] [Google Scholar]
  12. V. Girault and P.A. Raviart, Finite Element Method for Navier–Stokes Equations. Springer, Berlin (1986). [Google Scholar]
  13. M.D. Gunzburger, Flow Control, IMA 68. Springer-Verlag, New York (1995). [Google Scholar]
  14. M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier–Stokes flows with boundary control. SIAM J. Control Optim. 39 (2000) 594–634. [CrossRef] [MathSciNet] [Google Scholar]
  15. M.D. Gunzburger, L.S. Hou and Th.P. Svobodny, Analysis and finite approximation of optimal control problems for the stationary Navier–Stokes equations with Dirichlet control. Math. Model. Numer. Anal. 25 (1990) 711–748. [Google Scholar]
  16. M. Hinze and K. Kunisch, Second order methods for boundary control of the instationary Navier–Stokes system. Z. Angew. Math. Mech. 84 (2004) 171–187. [CrossRef] [MathSciNet] [Google Scholar]
  17. L.S. Hou and S.S. Ravindran, A Penalized Neumann Control Approach for Solving an Optimal Dirichlet Control Problem for the Navier–Stokes Equations. SIAM J. Control and Optim. 36 (1998) 1795–1814. [Google Scholar]
  18. G. Hellwig, Differential Operators of Mathematical Physics: An Introduction. Addison-Wesley, Reading, MA (1967). [Google Scholar]
  19. D.T.J. Hurle and E. Jakeman, Soret driven thermo-solutal convection. J. Fluid Mech. 47 (1971) 667–687. [CrossRef] [Google Scholar]
  20. K. Ito and S.S. Ravindran, Optimal control of thermally convected fluid flows. SIAM J. Sci. Comput. 19 (1998) 1847–1869. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.L. Lions and E. Magnes, Problemes aux limits Non Homogeneous et Applications, Vol. II. Dunod, Paris (1968). [Google Scholar]
  22. I. Mercader, O. Batiste, A. Alonso and E. Knoblock, Convections, anti-convections and multi-convections in binary fluid convection. J. Fluid Mech. 667 (2011) 586–606. [CrossRef] [Google Scholar]
  23. J. Necas, Les Méthods Directes en Théorie des Équations Elliptiques. Masson et Cie, Paris (1967). [Google Scholar]
  24. L. Nirenberg, On elliptic partial differential equations. Annul. Sc. Norm. Sup. Pisa 13 (1959) 116–162. [Google Scholar]
  25. S.S. Ravindran, Convergence of Extrapolated BDF2 Finite Element Schemes For Unsteady Penetrative Convection Model. Numer. Funct. Anal. Opt. 33 (2012) 48–79. [Google Scholar]
  26. V.M. Shevtsova, D.E. Melnikov and J.C. Legros, Onset of convection in Soret-driven instability. Phys. Rev. E 73 (2006) 047302. [Google Scholar]
  27. J. Simon, Compact sets in the space Lp(0,T;B) Annali di Matematika Pura ed Applicata (IV) 146 (1987) 65–96. [Google Scholar]
  28. J. Singer and H.H. Bau, Active control of convection. Phys. Fluids A 3 (1991) 2859–2865. [CrossRef] [Google Scholar]
  29. B.L. Smorodin, Convection of a binary mixture under conditions of thermal diffusion and variable temperature gradient. J. Appl. Mech. Tech. Phys. 43 (2002) 217–223. [CrossRef] [Google Scholar]
  30. S.S. Sritharan, Optimal Control of Viscous Flows. SIAM, Philadelphia (1998). [Google Scholar]
  31. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland (1977). [Google Scholar]
  32. G. Yang and N. Zabaras, The adjoint method for an inverse design problem in the directional solidification of binary alloys. J. Comput. Phys. 40 (1998) 432–452. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.