Free Access
Issue |
ESAIM: COCV
Volume 20, Number 4, October-December 2014
|
|
---|---|---|
Page(s) | 1153 - 1180 | |
DOI | https://doi.org/10.1051/cocv/2014010 | |
Published online | 08 August 2014 |
- R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
- J.-P. Aubin and H. Frankowska, Set-valued analysis. Birkhauser, Boston (1990). [Google Scholar]
- A.M. Bagirov, A. Nazari Ganjehlou, J. Ugon and A.H. Tor, Truncated codifferential method for nonsmooth convex optimization. Pacific. J. Optim. 6 (2010) 483–496. [Google Scholar]
- A.M. Bagirov and J. Ugon, Codifferential method for minimizing DC functions. J. Glob. Optim. 50 (2011) 3–22. [CrossRef] [Google Scholar]
- F.H. Clarke, The generalized problem of Bolza. SIAM J. Control Optim. 14 (1976) 469–478. [Google Scholar]
- F.H. Clarke, The Erdmann condition and Hamiltonian inclusions in optimzal control and the calculus of variations. Can. J. Math. 23 (1980) 494–509. [CrossRef] [Google Scholar]
- F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). [Google Scholar]
- B. Dacorogna, Direct Methods in the Calculus of Variations. Springer Science+Business Media, LCC, New York (2008). [Google Scholar]
- V.F. Demyanov, On codifferentiable functions. Vestn. Leningr. Univ., Math. 21 (1988) 27–33. [Google Scholar]
- V.F. Demyanov, Continuous generalized gradients for nonsmooth functions, in Lect. Notes Econ. Math. Systems, edited by A. Kurzhanski, K. Neumann and D. Pallaschke, vol. 304. Springer Verlag, Berlin (1988) 24–27. [Google Scholar]
- V.F. Demyanov and A.M. Rubinov, Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main (1995). [Google Scholar]
- V.F. Demyanov, A.M. Bagirov and A.M. Rubinov, A method of truncated codifferential with application to some problems of cluster analysis. J. Glob. Optim. 23 (2002) 63–80. [CrossRef] [Google Scholar]
- M.V. Dolgopolik, Codifferential Calculus in Normed Spaces. J. Math. Sci. 173 (2011) 441–462. [CrossRef] [MathSciNet] [Google Scholar]
- A.D. Ioffe, Euler–Lagrange and Hamiltonian formalism in dynamic optimization. Trans. Amer. Math. Soc. 349 (1997) 2871–2900. [CrossRef] [MathSciNet] [Google Scholar]
- A.D. Ioffe and R.T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems. Calc. Var. Partial Differ. Equ. 4 (1996) 59–87. [CrossRef] [Google Scholar]
- A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems. North-Holland, Amsterdam (1979). [Google Scholar]
- P.D. Loewen and R.T. Rockafellar, New Necessary Conditions for the Generalized Problem of Bolza. SIAM J. Control Optim. 34 (1996) 1496–1511. [CrossRef] [MathSciNet] [Google Scholar]
- B. Mordukhovich, On variational analysis of differential inclusions, in Optimization and Nonlinear Analysis, edited by A. Ioffe, M. Marcus and S. Reich, vol. 244. Pitman Res. Notes Math. Ser. Longman, Harlow, Essex (1992) 199–214. [Google Scholar]
- B. Mordukhovich, Discrete approximations and refined Euler–Lagrange conditions for nonconvex differential inclusions. SIAM J. Control Optim. 33 (1995) 882–915. [CrossRef] [MathSciNet] [Google Scholar]
- D. Pallaschke and R. Urbański, Reduction of quasidifferentials and minimal representations. Math. Program. 66 (1994) 161–180. [CrossRef] [Google Scholar]
- R.T. Rockafellar, Conjugate convex functions in optimal control and the calculus of variations. J. Math. Anal. Appl. 32 (1970) 174–222. [CrossRef] [Google Scholar]
- R.T. Rockafellar, Generalized Hamiltonian equations for convex problems of Lagrange. Pacific. J. Math. 33 (1970) 411–428. [CrossRef] [MathSciNet] [Google Scholar]
- R.T. Rockafellar, Existence and duality theorems for convex problems of Bolza. Trans. Amer. Math. Soc. 159 (1971) 1–40. [CrossRef] [MathSciNet] [Google Scholar]
- S. Scholtes, Minimal pairs of convex bodies in two dimensions. Mathematika 39 (1992) 267–273. [CrossRef] [MathSciNet] [Google Scholar]
- R. Vinter and H. Zheng, The Extended Euler–Lagrange Condition for Nonconvex Variation Problems. SIAM J. Control Optim. 35 (1997) 56–77. [CrossRef] [MathSciNet] [Google Scholar]
- R. Vinter, Optimal Control. Birkhauser, Boston (2000). [Google Scholar]
- K. Yosida, Functional Analysis. Springer-Verlag, New York (1980). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.