Free Access
Issue
ESAIM: COCV
Volume 20, Number 4, October-December 2014
Page(s) 1123 - 1152
DOI https://doi.org/10.1051/cocv/2014009
Published online 08 August 2014
  1. N. Ahmed and X. Ding, Controlled McKean-Vlasov equations. Commun. Appl. Anal. 5 (2001) 183–206. [MathSciNet] [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford, Clarendon Press (2000). [Google Scholar]
  3. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect. Math. ETH Zürich 2nd, edition. Birkhäuser Verlag, Basel (2008). [Google Scholar]
  4. D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type. Appl. Math. Opt. 63 (2011) 341–356. [Google Scholar]
  5. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, L. Giardina, L. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. National Academy of Sci. 105 (2008) 1232–1237. [CrossRef] [PubMed] [Google Scholar]
  6. A. Bensoussan, J. Frehse and P. Yam, Mean field games and mean field type control theory. Springer, New York (2013). [Google Scholar]
  7. A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, vol. 2 of AIMS Ser. Appl. Math.. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2007). [Google Scholar]
  8. R. Buckdahn, B. Djehiche and J. Li, A general stochastic maximum principle for sdes of mean-field type. Appl. Math. Opt. 64 (2011) 197–216. [Google Scholar]
  9. S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, Self-Organization in Biological Systems. Princeton University Press (2003). [Google Scholar]
  10. J.A. Cañizo, J.A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion. Math. Model. Meth. Appl. Sci. 21 (2011) 515–539. [Google Scholar]
  11. M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and control of the Cucker−Smale model. Preprint: arXiv:1210.5739 (2012). [Google Scholar]
  12. J.A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: mean-field limit and Wasserstein distances. Preprint: arXiv:1304.5776 (2013). [Google Scholar]
  13. J.A. Carrillo, M.R. D’Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2 (2009) 363–378. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Math. Modeling of Collective Behavior in Socio-Economic and Life Sci., edited by G. Naldi, L. Pareschi, G. Toscani and N. Bellomo. Model. Simul. Sci. Engrg. Technol. Birkhäuser, Boston (2010) 297–336. [Google Scholar]
  15. E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. [CrossRef] [MathSciNet] [Google Scholar]
  16. Y. Chuang, M. D’Orsogna, D. Marthaler, A. Bertozzi and L. Chayes, State transition and the continuum limit for the 2D interacting, self-propelled particle system. Physica D 232 (2007) 33–47. [CrossRef] [Google Scholar]
  17. Y. Chuang, Y. Huang, M. D’Orsogna and A. Bertozzi, Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. IEEE Int. Conference on Robotics and Automation (2007) 2292–2299. [Google Scholar]
  18. C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266. [CrossRef] [EDP Sciences] [Google Scholar]
  19. C. Clason and K. Kunisch, A measure space approach to optimal source placement. Comput. Optim. Appl. 53 (2012) 155–171. [Google Scholar]
  20. I. Couzin and N. Franks, Self-organized lane formation and optimized traffic flow in army ants. Proc. R. Soc. London B 270 (2002) 139–146. [CrossRef] [Google Scholar]
  21. I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision making in animal groups on the move. Nature 433 (2005) 513–516. [CrossRef] [PubMed] [Google Scholar]
  22. A. J. Craig and I. Flügge-Lotz, Investigation of optimal control with a minimum-fuel consumption criterion for a fourth-order plant with two control inputs; synthesis of an efficient suboptimal control. J. Basic Engrg. 87 (1965) 39–58. [CrossRef] [Google Scholar]
  23. E. Cristiani, B. Piccoli and A. Tosin, Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, edited by G. Naldi, L. Pareschi, G. Toscani and N. Bellomo. Model. Simul. Sci. Engrg. Technol. Birkhäuser, Boston (2010). [Google Scholar]
  24. E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9 (2011) 155–182. [CrossRef] [Google Scholar]
  25. F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework. IEEE Trans. Automat. Control 56 (2011) 1124–1129. [CrossRef] [MathSciNet] [Google Scholar]
  26. F. Cucker and E. Mordecki, Flocking in noisy environments. J. Math. Pures Appl. 89 (2008) 278–296. [Google Scholar]
  27. F. Cucker and S. Smale, Emergent behavior in flocks. IEEE Trans. Automat. Control 52 (2007) 852–862,. [CrossRef] [MathSciNet] [Google Scholar]
  28. F. Cucker and S. Smale, On the mathematics of emergence. Japan J. Math. 2 (2007) 197–227. [Google Scholar]
  29. F. Cucker, S. Smale and D. Zhou, Modeling language evolution. Found. Comput. Math. 4 (2004) 315–343. [CrossRef] [MathSciNet] [Google Scholar]
  30. G. Dal Maso, An Introduction to Γ-Convergence. Progress in Nonlinear Differ. Eqs. Appl., vol. 8. Birkhäuser Boston Inc., Boston, MA (1993). [Google Scholar]
  31. H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 153. Springer-Verlag, Berlin, Heidelberg, New York (1969). [Google Scholar]
  32. A.F. Filippov, Differential equations with Discontinuous Righthand Sides. Vol. 18 of Math. Appl. (Soviet Series). Translated from the Russian. Kluwer Academic Publishers Group, Dordrecht (1988). [Google Scholar]
  33. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Scientific Comput. Springer-Verlag, Berlin (2008). Reprint of the 1984 original. [Google Scholar]
  34. G. Grégoire and H. Chaté, Onset of collective and cohesive motion. Phys. Rev. Lett. 92 (2004). [Google Scholar]
  35. R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. [Google Scholar]
  36. M. Huang, P. Caines and R. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. Proc. of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA (2003) 98–103. [Google Scholar]
  37. A. Jadbabaie, J. Lin and A.S. Morse, Correction to: “Coordination of groups of mobile autonomous agents using nearest neighbor rules” [48 (2003) 988–1001; MR 1986266]. IEEE Trans. Automat. Control 48 (2003) 1675. [CrossRef] [MathSciNet] [Google Scholar]
  38. J. Ke, J. Minett, C.-P. Au and W.-Y. Wang, Self-organization and selection in the emergence of vocabulary. Complexity 7 (2002) 41–54. [CrossRef] [Google Scholar]
  39. E. F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26 (1970) 399–415. [Google Scholar]
  40. A. Koch and D. White, The social lifestyle of myxobacteria. Bioessays 20 (1998) 1030–1038. [CrossRef] [Google Scholar]
  41. J.-M. Lasry and P.-L. Lions, Mean field games. Japan J. Math. 2 (2007) 229–260. [Google Scholar]
  42. N. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups. Proc. of 40th IEEE Conf. Decision Contr. (2001) 2968–2973. [Google Scholar]
  43. H. Niwa, Self-organizing dynamic model of fish schooling. J. Theoret. Biol. 171 (1994) 123–136. [Google Scholar]
  44. M. Nuorian, P. Caines and R. Malhamé, Synthesis of Cucker−Smale type flocking via mean field stochastic control theory: Nash equilibria. Proc. of 48th Allerton Conf. Comm., Cont. Comp., Monticello, Illinois (2010) 814–815. [Google Scholar]
  45. M. Nuorian, P. Caines and R. Malhamé, Mean field analysis of controlled Cucker−Smale type flocking: Linear analysis and perturbation equations. Proc. of 18th IFAC World Congress Milano, Italy (2011) 4471–4476. [Google Scholar]
  46. J. Parrish and L. Edelstein-Keshet, Complexity, pattern and evolutionary trade-offs in animal aggregation. Science 294 (1999) 99–101. [CrossRef] [PubMed] [Google Scholar]
  47. J. Parrish, S. Viscido and D. Gruenbaum, Self-organized fish schools: An examination of emergent properties. Biol. Bull. 202 (2002) 296–305. [Google Scholar]
  48. L. Perea, G. Gómez and P. Elosegui, Extension of the Cucker–Smale control law to space flight formations. AIAA J. Guidance, Control, and Dynamics 32 2009 527–537. [CrossRef] [Google Scholar]
  49. B. Perthame, Mathematical tools for kinetic equations. Bull. Am. Math. Soc., New Ser. 41 (2004) 205–244. [CrossRef] [Google Scholar]
  50. B. Perthame, Transport Equations in Biology. Basel, Birkhäuser (2007). [Google Scholar]
  51. K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788–2808. [CrossRef] [MathSciNet] [Google Scholar]
  52. Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete Contin. Dyn. Syst. Ser. A. [Google Scholar]
  53. R. Rannacher and B. Vexler, Adaptive finite element discretization in PDE-based optimization. GAMM-Mitt. 33 (2010) 177–193. [CrossRef] [MathSciNet] [Google Scholar]
  54. W. Romey, Individual differences make a difference in the trajectories of simulated schools of fish. Ecol. Model. 92 (1996) 65–77. [Google Scholar]
  55. M.B. Short, M. R. D’Orsogna, V.B. Pasour, G.E. Tita, P.J. Brantingham, A.L. Bertozzi and L.B. Chayes, A statistical model of criminal behavior. Math. Models Methods Appl. Sci. 18 (2008) 1249–1267. [CrossRef] [Google Scholar]
  56. G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181. [Google Scholar]
  57. K. Sugawara and M. Sano, Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system. Phys. D 100 (1997) 343–354. [CrossRef] [Google Scholar]
  58. J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical xy model: How birds fly together. Phys. Rev. Lett. 75 (1995) 4326–4329. [CrossRef] [PubMed] [Google Scholar]
  59. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 (1995) 1226–1229. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  60. T. Vicsek and A. Zafeiris, Collective motion. Phys. Rep. 517 (2012) 71–140. [Google Scholar]
  61. C. Villani, Optimal Transport, vol. 338. Grundlehren der Math. Wissenschaften, [Fundamental Principles of Mathematical Science]. Springer-Verlag, Berlin (2009). Old and new. [Google Scholar]
  62. G. Vossen and H. Maurer, L1 minimization in optimal control and applications to robotics. Optim. Control Appl. Methods 27 (2006) 301–321. [Google Scholar]
  63. G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional. ESAIM: COCV 17 (2011) 858–886. [CrossRef] [EDP Sciences] [Google Scholar]
  64. C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion. Proc. Natl. Acad. Sci. 106 (2009) 5464–5469. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.