Free Access
Issue |
ESAIM: COCV
Volume 20, Number 4, October-December 2014
|
|
---|---|---|
Page(s) | 1203 - 1213 | |
DOI | https://doi.org/10.1051/cocv/2014012 | |
Published online | 08 August 2014 |
- L.E. Andersson, Algorithms for solving inverse eigenvalue problems for Sturm−Liouville equations, Inverse Methods in Action edited by P.C. Sabatier. Springer-Verlag (1990) 138–145. [Google Scholar]
- F. Al-musallam and A. Boumenir, Identification and control of a heat equation. Int. J. Evolution Equations 6 (2013) 85–100. [Google Scholar]
- S.A. Avdonin and A. Bulanova, Boundary control approach to the spectral estimation problem: the case of multiple poles. Math. Control Signals Systems 22 (2011) 245–265. [CrossRef] [MathSciNet] [Google Scholar]
- S.A. Avdonin, F. Gesztesy and A. Makarov, Spectral estimation and inverse initial boundary value problems. Vol. 4 of Inverse Probl. Imaging (2010) 1–9. [Google Scholar]
- V. Barcilon, Iterative solution of the inverse Sturm−Liouville problem. J. Math. Phys. 15 (1974) 429–436. [Google Scholar]
- A. Boumenir, The recovery of analytic potentials. Inverse Probl. 15 (1999) 1405–1423. [CrossRef] [Google Scholar]
- A. Boumenir, The reconstruction of an analytic string from two spectra. Inverse Probl. 20 (2004) 833–846. [CrossRef] [Google Scholar]
- A. Boumenir, Computing Eigenvalues of periodic Sturm−Liouville problems by the Shannon-Whittaker sampling theorem. Math. Comput. 68 (1999) 1057–1066. [CrossRef] [Google Scholar]
- A. Boumenir and Vu Kim Tuan, Recovery of the heat coefficient by two measurements. Inverse Probl. Imaging 5 (2011) 775–791 [CrossRef] [MathSciNet] [Google Scholar]
- A. Boumenir and Vu Kim Tuan, An inverse problem for the wave equation. J. Inverse Ill-Posed Probl. 19 (2011) 573–592. [CrossRef] [MathSciNet] [Google Scholar]
- A. Boumenir and A.I. Zayed, Sampling with a String. J. Fourier Anal. Appl. 8 (2002) 211–232. [CrossRef] [Google Scholar]
- A. Boumenir and R. Carroll, Toward a general theory of transmutation. Nonlin. Anal. 26 (1996) 1923–1936. [CrossRef] [Google Scholar]
- R. Carroll, F. Santosa, On the complete recovery of geophysical data. Math. Methods Appl. Sci. 4 (1982) 33–73. [CrossRef] [Google Scholar]
- H. Dym and H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem. Vol. 31 of Probab. Math. Stat. Academic Press, New York, London (1976). [Google Scholar]
- G.M.L. Gladwell, Inverse Problems in Vibration, series: Solid Mechanics and Its Applications, 2nd edition. Springer (2004). [Google Scholar]
- O.H. Hald, The inverse Sturm−Liouville problem with symmetric potentials. Acta Math. 141 (1978) 263–291. [CrossRef] [MathSciNet] [Google Scholar]
- S. Hansen and E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass. SIAM J. Control Optim. 33 (1995) 1357–1391. [CrossRef] [MathSciNet] [Google Scholar]
- S.I. Kabanikhin, A. Satybaev and M. Shishlenin, Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems, Series: Inverse and Ill-Posed Problems Series. De Gruyter 48 (2005). [Google Scholar]
- I.S. Kac and M.G. Krein, On the spectral functions of the String. Amer. Math. Soc. Transl. 103 (1974) 19–102. [Google Scholar]
- V. Komornik and P. Loreti, Fourier Series in Control Theory. Springer Monogr. Math. Springer (2005) [Google Scholar]
- U. Küchler, K. Neumann An extension of Krein’s inverse spectral theorem to strings with non-reflecting left boundaries. Lect. Notes Math. 1485 (1991) 354–373. [CrossRef] [Google Scholar]
- B.M. Levitan and M.G. Gasymov, Determination of a differential equation by two spectra. Russian Math. Surv. 19 (1964) 3–63. [CrossRef] [Google Scholar]
- J.R. McLaughlin, Stability theorems for two inverse spectral problems. Inverse Probl. 4 (1988) 529–540. [CrossRef] [Google Scholar]
- V. Marchenko, Sturm−Liouville Operators and Applications. Oper. Theory Adv. Appl., vol. 22. Birkhäuser, Basel (1986). [Google Scholar]
- Y. Privat, E. Trélat and E. Zuazua, Optimal Observation of the One-dimensional Wave Equation. J. Fourier Anal. Appl. 19 (2013) 514–544. [CrossRef] [Google Scholar]
- W. Rundell and P.E. Sacks, Reconstruction techniques for classical inverse Sturm−Liouville problem. Math. Comput. 58 (1992) 161–183. [CrossRef] [Google Scholar]
- T.I. Seidman, S.A. Avdonin and S.A. Ivanov, The ‘window problem’ for series of complex exponentials. J. Fourier Anal. Appl. 6 (2000) 233–254. [CrossRef] [Google Scholar]
- M. Sini, On the one-dimensional Gelfand and Borg−Levinson spectral problems for discontinuous coefficients. Inverse Probl. 20 (2004) 1371–1386. [CrossRef] [Google Scholar]
- M. Sini, Some uniqueness results of discontinuous coefficients for the one-dimensional inverse spectral problem. Inverse Probl. 19 (2003) 871–894. [CrossRef] [Google Scholar]
- G. Turchetti and G. Sagretti, Stieltjes Functions and Approximation Solutions of an Inverse Problem. Springer Lect. Notes Phys. 85 (1978) 123-33. [Google Scholar]
- V.S. Valdimirov, Equations of Mathematical Physics. Marcel Dekker, New York (1971). [Google Scholar]
- A. Zayed, Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton, FL (1993). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.