Free Access
Volume 20, Number 4, October-December 2014
Page(s) 1214 - 1223
Published online 08 August 2014
  1. E. Acerbi and N. Fusco, An approximation lemma for W1, p functions, Material instabilities in continuum mechanics (Edinburgh, 1985-1986). Oxford Sci. Publ., Oxford Univ. Press, New York (1988) 1–5. [Google Scholar]
  2. E. Acerbi and N. Fusco, “A regularity theorem for minimizers of quasiconvex integrals”. Arch. Rational Mech. Anal. 99 (1987) 261–281. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1998) 407–436. [MathSciNet] [Google Scholar]
  4. M. Bellieud and I. Gruais, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non-local effects. Memory effects. J. Math. Pures Appl. 84 (2005) 55–96. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, corrected reprint of the 1978 original. AMS Chelsea Publishing, Providence (2011). [Google Scholar]
  6. A. Beurling and J. Deny, Espaces de Dirichlet. Acta Math. 99 (1958) 203–224. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Braides, Γ–convergence for Beginners. Oxford University Press, Oxford (2002). [Google Scholar]
  8. A. Braides, M. Briane, and J. Casado-Díaz, Homogenization of non-uniformly bounded periodic diffusion energies in dimension two. Nonlinearity 22 (2009) 1459–1480. [CrossRef] [Google Scholar]
  9. M. Briane, Homogenization of high-conductivity periodic problems: Application to a general distribution of one-directional fibers. SIAM J. Math. Anal. 35 (2003) 33–60. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Briane and M. Camar–Eddine, Homogenization of two-dimensional elasticity problems with very stiff coefficients. J. Math. Pures Appl. 88 (2007) 483–505. [CrossRef] [Google Scholar]
  11. M. Briane and M. Camar–Eddine, An optimal condition of compactness for elasticity problems involving one directional reinforcement. J. Elasticity 107 (2012) 11–38. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Briane and J. Casado–Díaz, Asymptotic behavior of equicoercive diffusion energies in two dimension. Calc. Var. Partial Differ. Equ. 29 (2007) 455–479. [CrossRef] [Google Scholar]
  13. M. Briane and J. Casado–Díaz, Compactness of sequences of two-dimensional energies with a zero-order term. Application to three-dimensional nonlocal effects. Calc. Var. Partial Differ. Equ. 33 (2008) 463–492. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Briane and J. Casado–Díaz, A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian. In preparation. [Google Scholar]
  15. M. Briane and N. Tchou, Fibered microstructures for some nonlocal Dirichlet forms. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30 (2001) 681–711. [MathSciNet] [Google Scholar]
  16. M. Camar–Eddine and P. Seppecher, Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math. Models Methods Appl. Sci. 12 (2002) 1153–1176. [CrossRef] [Google Scholar]
  17. M. Camar–Eddine and P. Seppecher, Determination of the closure of the set of elasticity functionals. Arch. Ration. Mech. Anal. 170 (2003) 211–245. [CrossRef] [Google Scholar]
  18. L. Carbone and C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1–60. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Dal Maso, An introduction to Γ-convergence. Progr. Nonlin. Differ. Equ. Birkhaüser, Boston (1993). [Google Scholar]
  20. E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell’area. Rend. Mat. Appl. 8 (1975) 277–294. [Google Scholar]
  21. E. De Giorgi, Γ-convergenza e G-convergenza. Boll. Un. Mat. Ital. 14-A (1977) 213–220. [Google Scholar]
  22. N. Dunford and J.T. Schwartz, Linear operators. Part I. General theory. Wiley-Interscience Publication, New York (1988). [Google Scholar]
  23. V.N. Fenchenko and E.Ya. Khruslov, Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness. Dokl. AN Ukr. SSR 4 (1981). [Google Scholar]
  24. E.Ya. Khruslov, Homogenized models of composite media, Composite Media and Homogenization Theory, edited by G. Dal Maso and G.F. Dell’Antonio, in Progr. Nonlin. Differ. Equ. Appl. Birkhaüser (1991) 159–182. [Google Scholar]
  25. E.Ya. Khruslov and V.A. Marchenko, Homogenization of Partial Differential Equations, vol. 46. Progr. Math. Phys. Birkhäuser, Boston (2006). [Google Scholar]
  26. N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1963) 189–206. [Google Scholar]
  27. U. Mosco, Composite media and asymptotic Dirichlet forms. J. Func. Anal. 123 (1994) 368–421. [CrossRef] [MathSciNet] [Google Scholar]
  28. F. Murat, H-convergence, Séminaire d’Analyse Fonctionnelle et Numérique, 1977-78, Université d’Alger, multicopied, 34 pp. English translation: F. Murat and L. Tartar, H-convergence. Topics in the Mathematical Modelling of Composite Materials, edited by L. Cherkaev and R.V. Kohn, vol. 31. Progr. Nonlin. Differ. Equ. Appl. Birkaüser, Boston (1998) 21–43. [Google Scholar]
  29. C. Pideri and P. Seppecher, A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9 (1997) 241–257. [CrossRef] [MathSciNet] [Google Scholar]
  30. S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968) 571–597. [Google Scholar]
  31. L. Tartar, The General Theory of Homogenization: A Personalized Introduction. Lect. Notes Unione Matematica Italiana. Springer-Verlag, Berlin, Heidelberg (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.