Free Access
Volume 21, Number 1, January-March 2015
Page(s) 1 - 59
Published online 17 October 2014
  1. V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Springer (2008). [Google Scholar]
  2. G. Alberti, Variational models for phase transitions, an approach via Γ-convergence, in Calculus of variations and partial differential equations (Pisa 1996). Springer (2000) 95–114. [Google Scholar]
  3. L. Ambrosio and G. Dal Maso, A general chain rule for distributional derivatives. In vol. 108. Proc. of Amer. Math. Soc. (1990) 691–702. [Google Scholar]
  4. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2005). [Google Scholar]
  5. H. Attouch, Variational convergence for functions and operators. Appl. Math. Ser. Pitman (Advanced Publishing Program), Boston, MA (1984). [Google Scholar]
  6. J.F. Bell, Mechanics of Solids. Vol. 1: The Experimental Foundations of Solid Mechanics. Springer (1984). [Google Scholar]
  7. L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989) 149–169. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion. Math. Meth. Appl. Sci. 31 (2008) 1029–1064. [CrossRef] [Google Scholar]
  9. E. Bonetti, G. Bonfanti and R. Rossi, Thermal effects in adhesive contact: Modelling and analysis. Nonlinearity 22 (2009) 2697–2731. [CrossRef] [Google Scholar]
  10. E. Bonetti, G. Schimperna and A. Segatti, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differ. Equ. 218 (2005) 91–116. [Google Scholar]
  11. B. Bourdin, G. Francfort and J.-J. Marigo, The variational approach to fracture. J. Elasticity 91 (2008) 5–148. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Campanato, Proprietà di hölderianità di alcune classi di funzioni. Annali della Scuola Normale Superiore di Pisa 17 (1963) 175–188. [Google Scholar]
  13. S. Campanato, Proprietà di una famiglia di spazi funzionali. Annali della Scuola Normale Superiore di Pisa 18 (1964) 137–160. [Google Scholar]
  14. V. Caselles, A. Chambolle and M. Novaga, Regularity for solutions of the total variation denoising problem. Revista Matemática Iberoamericana 27 (2011) 729–1098. [Google Scholar]
  15. G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Rat. Mech. Anal. 176 (2005) 165–225. [Google Scholar]
  16. G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side. J. für die reine und angewandte Mathematik 520 (2000) 1–35. [Google Scholar]
  17. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (1992). [Google Scholar]
  18. H. Federer, Geometric Measure Theory. Springer (1969). [Google Scholar]
  19. E. Feireisl, Dynamics of viscous compressible fluids, Vol. 26 of Oxford Lect. Ser. Math. Appl. Oxford University Press, Oxford (2004). [Google Scholar]
  20. E. Feireisl, Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53 (2007) 461–490. [CrossRef] [Google Scholar]
  21. E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32 (2009) 1345–1369. [CrossRef] [MathSciNet] [Google Scholar]
  22. E. Feireisl, M. Frémond, E. Rocca and G. Schimperna, A new approach to non-isothermal models for nematic liquid crystals. Arch. Ration. Mech. Anal. 205 (2012) 651–672. [CrossRef] [Google Scholar]
  23. I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Annali della Scuola Normale Superiore di Pisa 24 (1997) 463–499. [Google Scholar]
  24. G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Math. 595 (2006) 55–91. [Google Scholar]
  25. F. Freddi and M. Frémond, Damage in domains and interfaces: A coupled predictive theory. J. Mech. Mat. Struct. 1 (2006) 1205–1233. [CrossRef] [Google Scholar]
  26. M. Frémond, Contact with adhesion, in Topics in Nonsmooth Mechanics. Edited by J.J. Moreau, P.D. Panagiotopoulos and G. Strang. Birkhäuser (1988) 157–186. [Google Scholar]
  27. M. Frémond, Non-Smooth Thermomechanics. Springer-Verlag, Berlin, Heidelberg (2002). [Google Scholar]
  28. M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33 (1996) 1083–1103. [Google Scholar]
  29. Y.C. Fung, Foundations of solid mechanics. Prentice-Hall, Inc. (1965). [Google Scholar]
  30. P. Gérard, Microlocal defect measures. Commun. Partial Differ. Equ. 16 (1991) 1761–1794. [Google Scholar]
  31. A. Giacomini, Ambrosio−Tortorelli approximation of quasi-static evolution of brittle fracture. Calc. Var. Partial Differ. Equ. 22 (2005) 129–172. [Google Scholar]
  32. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press (1983). [Google Scholar]
  33. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). [Google Scholar]
  34. J.A. Griepentrog, Linear elliptic boundary value problems with non-smooth data: Campanato spaces of functionals. Math. Nachrichten 243 (2002) 19–42. [CrossRef] [Google Scholar]
  35. J.A. Griepentrog and L. Recke, Linear elliptic boundary value problems with non-smooth data: Normal solvability on Sobolev-Campanato spaces. Math. Nachrichten 225 (2001) 39–74. [Google Scholar]
  36. B. Halphen and Q.S. Nguyen, Sur les matériaux standards généralisés. J. Mécanique 14 (1975) 39–63. [Google Scholar]
  37. C.O. Horgan and J.K. Knowles, The effect of nonlinearity on a principle of Saint-Venant type. J. Elasticity 11 (1981) 271–291. [CrossRef] [MathSciNet] [Google Scholar]
  38. A.D. Ioffe and V.M. Tihomirov, Theory of extremal problems, vol. 6 of Stud. Math. Appl. Translated from the Russian by Karol Makowski. North-Holland Publishing Co., Amsterdam (1979). [Google Scholar]
  39. D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18 (2008) 1529–1569. [CrossRef] [MathSciNet] [Google Scholar]
  40. J.K. Knowles, The finite anti-plane shear near the tip of a crack for a class of incompressible elastic solids. Int. J. Fracture 13 (1977) 611–639. [CrossRef] [Google Scholar]
  41. M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem. Math. Mech. Solids 11 (2006) 423–447. [Google Scholar]
  42. J.L. Lewis, Uniformly fat sets. Trans. Amer. Math. Soc. 308 (1988) 177–196. [CrossRef] [MathSciNet] [Google Scholar]
  43. F. Maggi, Sets of finite perimeter and geometric variational problems. Cambridge (2012). [Google Scholar]
  44. M. Marcus and V.J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972) 294–320. [CrossRef] [MathSciNet] [Google Scholar]
  45. A. Mielke, Evolution in rate-independent systems, in vol. 2 of Handbook Differ. Equ. Evol. Equ., edited by C.M. Dafermos and E. Feireisl. Elsevier B.V., Amsterdam (2005) 461–559. [Google Scholar]
  46. A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16 (2006) 177–209. [Google Scholar]
  47. A. Mielke and F. Theil, On rate-independent hysteresis models. Nonlin. Differ. Equ. Appl. 11 (2004) 151–189. [Google Scholar]
  48. A. Mielke, T. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31 (2008) 387–416. [Google Scholar]
  49. A. Mielke, T. Roubíček and M. Thomas, From damage to delamination in nonlinearly elastic materials at small strains. J. Elasticity 109 (2012) 235–273. [CrossRef] [MathSciNet] [Google Scholar]
  50. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [CrossRef] [MathSciNet] [Google Scholar]
  51. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. U. Mat. Ital. B 14 (1977) 285–299. [Google Scholar]
  52. J. Naumann, On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids. Math. Methods Appl. Sci. 29 (2006) 1883–1906. [CrossRef] [Google Scholar]
  53. M. Negri and C. Ortner, Quasi-static crack propagation by Griffith’s criterion. Math. Models Methods Appl. Sci. 18 2008 1895–1925. [CrossRef] [MathSciNet] [Google Scholar]
  54. R. Rossi and T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlinear Anal. 74 (2011) 3159–3190. [Google Scholar]
  55. R. Rossi and T. Roubíček, Adhesive contact delaminating at mixed mode, its thermodynamics and analysis. Interfaces Free Bound. 14 (2013) 1–37. [Google Scholar]
  56. T. Roubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser (2005). [Google Scholar]
  57. T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains. SIAM J. Math. Anal. 42 (2010) 256–297. [CrossRef] [MathSciNet] [Google Scholar]
  58. T. Roubíček, L. Scardia and C. Zanini, Quasistatic delamination problem. Contin. Mech. Thermodyn. 21 (2009) 223–235. [Google Scholar]
  59. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (1987). [Google Scholar]
  60. M. Thomas, Griffith formula for mode-III-interface-cracks in strainhardening compounds. Mech. Adv. Mater. Struct. 12 (2008) 428–437. [CrossRef] [Google Scholar]
  61. M. Thomas, Rate-independent damage processes in nonlinearly elastic materials. Ph.D. thesis, Humboldt-Universität zu Berlin (2010). [Google Scholar]
  62. M. Thomas, Quasistatic damage evolution with spatial BV-regularization. Discrete Contin. Dyn. Syst. Ser. S 6 (2013) 235–255. [Google Scholar]
  63. M. Thomas, Uniform Poincar*error*é−Sobolev and relative isoperimetric inequalities for classes of domains. Accepted for publication in Discrete Contin. Dyn. Syst. WIAS-Preprint 1797 (2013). [Google Scholar]
  64. M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain: existence and regularity results. Zeit. angew. Math. Mech. 90 (2010) 88–112. [Google Scholar]
  65. M. Thomas and R. Rossi, Rate-independent Systems with viscosity and inertia: existence and evolutionary T-convergence. In preparation (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.