Free Access
Volume 21, Number 1, January-March 2015
Page(s) 60 - 72
Published online 17 October 2014
  1. A.D. Aleksandrov, Uniqueness theorems for surfaces in the large. (Russian) Vestnik Leningrad Univ. 13 (1958) 5–8. [Google Scholar]
  2. A. Alvino, V. Ferone, and G. Trombetti, On the properties of some nonlinear eigenvalues. SIAM J. Math. Anal. 29 (1998) 437–451. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Barles, Remark on uniqueness results of the first eigenvalue of the p-Laplacian. In vol. 384 of Annales de la faculté des sciences de Toulouse (1988) 65–75. [Google Scholar]
  4. H. Berestycki and L. Nirenberg, On the moving plane method and the sliding method. Boll. Soc. Brasiliera Mat. Nova Ser. 22 (1991) 1–37. [CrossRef] [Google Scholar]
  5. T. Bhattacharya, A proof of the Faber Krahn inequality for the first eigenvalue of the p-Laplacian. Ann. Mat. Pura Appl. Ser. 177 (1999) 225–231. [CrossRef] [Google Scholar]
  6. J. Brothers, and W. Ziemer, Minimal rearrangements of Sobolev functions. Journal fur die reine und angewandle Mathematik 384 (1988) 153–179. [Google Scholar]
  7. R. Courant, Beweis des Satzes, dass von allen homogenen Membranen gegebenen Umfantes und gegebener Spannung die kreisfrmige den tiefsten Grundton besizt. Math. Z. 3 (1918) 321–28. [CrossRef] [Google Scholar]
  8. M. Cuesta and P. Takác, A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integral Eq. 13 (2000) 721–746. [Google Scholar]
  9. L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 493–516. [Google Scholar]
  10. L. Damascelli and F. Pacella, Monotonicity and symmetry results for p-Laplace equations and applications. Adv. Differ. Equ. 5 (2000) 1179–1200. [Google Scholar]
  11. G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172. [Google Scholar]
  12. I. Fragalà, F. Gazzola and B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Zeit. 254 (2006) 117–132. [Google Scholar]
  13. A. Farina and B. Kawohl, Remarks on an overdetermined problem. Calc. Var. Partial Differ. Eq. 31 (2008) 351–357. [CrossRef] [Google Scholar]
  14. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100. [Google Scholar]
  15. P. Lindqvist, On a nonlinear eigenvalue problem, Department of Mathematics. Norwegian University of Sciencie and technology N-7491, Trondheim, Norway. [Google Scholar]
  16. H. Lou, On singular sets of solutions to p-Laplace equations. Chinese Ann. Math. 29 521–530 (2008). [CrossRef] [Google Scholar]
  17. J. García Melián and S. de Lis, On the perturbation of eigenvalues for the p-Laplacian. C.R. Acad. Sci. Paris 332 (2001) 893–898. [CrossRef] [MathSciNet] [Google Scholar]
  18. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations. Prentice-Hall (1967). [Google Scholar]
  19. S. Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic equations. Ann. Scuo. Normale Sup. di Pisa 14 (1987) 403–421. [Google Scholar]
  20. J. Serrin, A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. [Google Scholar]
  21. G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura. Appl. 120 (1979) 159–184. [CrossRef] [Google Scholar]
  22. P. Tolksdorff, On the Dirichlet Problem for quasilinear equations. Commun. Partial Differ. Eq. 8 (1983) 773–817. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.