Free Access
Volume 21, Number 2, April-June 2015
Page(s) 359 - 371
Published online 10 October 2014
  1. L. Barbosa and P. Bérard, Eigenvalue and “Twisted” eigenvalue problems, applications to CMC surfaces. J. Math. Pures Appl. 79 (2000) 427–450. [CrossRef] [Google Scholar]
  2. B. Brandolini, P. Freitas, C. Nitsch and C. Trombetti, Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem. Adv. Math. 228 (2011) 2352–2365. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Brock, F. Chiacchio and A. Mercaldo, Weighted isoperimetric inequalities in cones and applications. Nonlinear Anal. 75 (2012) 5737–5755. [CrossRef] [MathSciNet] [Google Scholar]
  4. A.P. Buslaev, V.A. Kondrat’ev and A.I. Nazarov, On a family of extremal problems and related properties of an integral. Mat. Zametki 64 (1998) 830–838. English transl. Math. Notes 64 (1998) 719–725. [CrossRef] [Google Scholar]
  5. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian.Problems in analysis: A symposium in honor of Salomon Bochner. Princeton University Press (1970) 195–199. [Google Scholar]
  6. A. Cianchi, A sharp trace inequality for functions of bounded variation in the ball.Proc. of Royal Soc. Edinburgh, in vol. 142. Cambridge University Press (2012) 1179–1191. [Google Scholar]
  7. G. Croce and B. Dacorogna, On a generalized Wirtinger inequality. Discr. Contin. Dyn. Syst. 9 (2003) 1329–1341. [Google Scholar]
  8. G. Croce, A. Henrot and G. Pisante, An isoperimetric inequality for a nonlinear eigenvalue problem. Ann. Inst. Henri Poincaré Anal. non Linéaire 29 (2012) 21–34. [CrossRef] [Google Scholar]
  9. B. Dacorogna, W. Gangbo and N. Subía, Sur une généralisation de l’inégalité de Wirtinger. Ann. Inst. Henri Poincaré Anal. Non Linéaire 9 (1992) 29–50. [Google Scholar]
  10. F. Della Pietra and N. Gavitone, Symmetrization for Neumann anisotropic problems and related questions. Adv. Nonlinear Stud. 12 (2012) 219–235. [MathSciNet] [Google Scholar]
  11. F. Della Pietra and N. Gavitone, Relative isoperimetric inequality in the plane: the anisotropic case. J. Convex. Anal. 20 (2013) 157–180. [Google Scholar]
  12. L. Esposito, V. Ferone, B. Kawohl, C. Nitsch and C. Trombetti, The longest shortest fence and sharp Poincaré-Sobolev inequalities. Arch. Rational Mech. Anal. 206 (2012) 821–851. [CrossRef] [Google Scholar]
  13. P. Freitas and A. Henrot, On the First Twisted Dirichlet Eigenvalue. Commun. Anal. Geom. 12 (2004) 1083–1103. [CrossRef] [Google Scholar]
  14. I.V. Gerasimov and A.I. Nazarov, Best constant in a three-parameter Poincaré inequality. Probl. Mat. Anal. 61 (2011) 69–86, (Russian). English transl.: J. Math. Sci. 179 (2011) 80–99. [Google Scholar]
  15. G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge University Press, Cambridge (1988). [Google Scholar]
  16. V.G. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations. Springer, Heidelberg (2011) [Google Scholar]
  17. A.I. Nazarov, On exact constant in the generalized Poincaré inequality. Probl. Mat. Anal. 24 (2002) 155–180, (Russian). English transl.: J. Math. Sci. 112 (2002) 4029–4047. [Google Scholar]
  18. A.I. Nazarov, On symmetry and asymmetry in a problem of shape optimization. (2012) 1–5. Available at [Google Scholar]
  19. E. Parini, An introduction to the Cheeger problem. Surv. Math. Appl. 6 (2011) 9–21. [MathSciNet] [Google Scholar]
  20. E. Parini, The second eigenvalue of the p-Laplacian as p goes to 1. Inter. J. Differ. Equ. (2010) DOI:10.1155/2010/984671. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.