Free Access
Issue
ESAIM: COCV
Volume 21, Number 2, April-June 2015
Page(s) 372 - 377
DOI https://doi.org/10.1051/cocv/2014022
Published online 27 November 2014
  1. V. Agostiniani and A. DeSimone, Ogden-type energies for nematic elastomers. Int. J. Nonlin. Mech. 47 (2012) 402–412. [CrossRef] [Google Scholar]
  2. V. Agostiniani, G. Dal Maso and A. DeSimone, Attainment results for nematic elastomers. Proc. Roy. Soc. Edinb. A, in press (2013). [Google Scholar]
  3. L. Ambrosio and P. Tilli, Topics on analysis in metric spaces. In vol. 25 of Oxford lecture series in mathematics and its applications. Oxford University Press, New York (2004). [Google Scholar]
  4. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1976) 337–403. [Google Scholar]
  5. J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinb. 88A (1981) 315–328. [Google Scholar]
  6. M.C. Calderer, C.A. Garavito and C. Luo, Liquid crystal elastomers and phase transitions in rod networks. Preprint arXiv:1303.6220 (2013). [Google Scholar]
  7. P. Cesana and A. DeSimone, Strain-order coupling in nematic elastomers: equilibrium configurations. Math. Models Methods Appl. Sci. 19 (2009) 601–630. [CrossRef] [Google Scholar]
  8. P.G. Ciarlet, Mathematical elasticity. I. Three-dimensional elasticity. Vol. 20 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam (1988). [Google Scholar]
  9. B. Dacorogna, Direct methods in the calculus of variations. Vol. 78 of Appl. Math. Sci., 2nd ed. Springer, Berlin (2008). [Google Scholar]
  10. A. DeSimone and L. Teresi, Elastic energies for nematic elastomers. Eur. Phys. J. E 29 (2009) 191–204. [CrossRef] [EDP Sciences] [Google Scholar]
  11. I. Fonseca and W. Gangbo, Local invertibility of Sobolev functions. SIAM J. Math. Anal. 26 (1995) 280–304. [CrossRef] [MathSciNet] [Google Scholar]
  12. V.M. Gol’dshtein and Y.G. Reshetnyak, Quasiconformal mapping and Sobolev spaces, vol. 54. Kluwer Academic Publishers, Dordrecht, Germany (1990). [Google Scholar]
  13. D. Henao and C. Mora-Corral, Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Ration. Mech. Anal. 197 (2010) 619–655. [Google Scholar]
  14. D. Henao and C. Mora-Corral, Fracture surfaces and the regularity of inverses for BV deformations. Arch. Ration. Mech. Anal. 201 (2011) 575–629. [Google Scholar]
  15. S. Müller, Q. Tang and B.S. Yan, On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11 (1994) 217–243. [Google Scholar]
  16. M. Warner and E.M. Terentjev, Liquid Crystal Elastomers. Clarendon Press, Oxford (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.