Free Access
Volume 21, Number 2, April-June 2015
Page(s) 583 - 601
Published online 19 March 2015
  1. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems, 2nd ed. Birkhäuser, Boston (2007). [Google Scholar]
  2. A. Borzì and G. Propst, Numerical investigation of the Liebau phenomenon. Z. Angew. Math. Phys. 54 (2003) 1050–1072. [CrossRef] [MathSciNet] [Google Scholar]
  3. W. Desch, E. Fašangová, J. Milota and G. Propst, Stabilization through viscoelastic boundary damping: a semigroup approach. Semigroup Forum 80 (2010) 405–415. [CrossRef] [MathSciNet] [Google Scholar]
  4. K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer-Verlag, New York (2000). [Google Scholar]
  5. M.A. Fernández, V. Milišić and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and Hyperbolic PDEs. Multiscale Model. Simul. 4 (2005) 215–236. [CrossRef] [Google Scholar]
  6. B. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass. SIAM J. Control Optim. 39 (2001) 1736–1747. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Guo, Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equations with variable coefficients. SIAM J. Control Optim. 40 (2002) 1905–1923. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Guo, J.M. Wang and S.P. Wang, On the C0-semigroup generation and exponential stabilization resulting from a shear force feedback on a rotating beam. Syst. Control Lett. 54 (2005) 557–574. [Google Scholar]
  9. B. Guo and R. Yu, The Riesz basis property of discrete operators and applications to a Euler-Bernoulli beam equations with boundary linear feedback control. IMA J. Math. Control Inf. 18 (2001) 241–251. [CrossRef] [MathSciNet] [Google Scholar]
  10. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1936) 367–379. [Google Scholar]
  11. B. Jacob and H. Zwart, Linear Port Hamiltonian Systems on Infinite-Dimensional Spaces. Birkhäuser, Basel (2012). [Google Scholar]
  12. V. Komornik, Exact Controllability and Stabilization: the Multiplier Method. Wiley-Masson, Paris-Chicester (1994). [Google Scholar]
  13. V. Komornik and P. Loreti, Fourier Series in Control Theory. Springer-Verlag, New York (2005). [Google Scholar]
  14. I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under L2(0,T;L2(Γ)) boundary terms. Appl. Math. Optim. 10 (1983) 275–286 [CrossRef] [MathSciNet] [Google Scholar]
  15. J.-L. Lions, Contrôle des systèmes distribués singuliers. Gauthiers-Villars, Paris (1968). [Google Scholar]
  16. M. Miklavc˘ic˘,Applied Functional Analysis and Partial Differential Equations. World Scientific, Singapore (1998). [Google Scholar]
  17. J.T. Ottesen, Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation. J. Math. Biol. 46 (2003) 309–332. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. H.J. Rath and I. Teipel, Der Fördereffekt in ventillosen, elastischen Leitungen. Z. Angew. Math. Phys. 29 (1978) 123–133. [CrossRef] [Google Scholar]
  19. W. Ruan, A coupled system of ODEs and quasilinear hyperbolic PDEs arising in a multiscale blood flow model. J. Math. Anal. Appl. 343 (2008) 778–798. [CrossRef] [Google Scholar]
  20. O. Staffans, Well-Posed Linear Systems. Cambridge University Press (2005). [Google Scholar]
  21. M. Tucsnak and G. Weiss, Simultaneous exact controllability and some applications. SIAM J. Control Optim. 38 (2000) 1408–1427. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser-Verlag, Basel (2009). [Google Scholar]
  23. H.J. von Bredow, Untersuchung eines ventillosen Pumpprinzips. Fortschr. Ber. VDI-Zeitschr. Reihe 7 (1968). [Google Scholar]
  24. G. Xu and B Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation. SIAM J. Control Optim. 42 (2003) 966–984. [CrossRef] [MathSciNet] [Google Scholar]
  25. C.-Z. Xu and G. Weiss, Eigenvalues and eigenvectors of semigroup generators obtained from diagonal generators by feedback. Commun. Inf. Syst. 11 (2011) 71–104. [MathSciNet] [Google Scholar]
  26. R. Young, An Introduction to Nonharmonic Fourier Analysis. Academic Press, New York (1980). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.