Free Access
Issue
ESAIM: COCV
Volume 21, Number 3, July-September 2015
Page(s) 857 - 875
DOI https://doi.org/10.1051/cocv/2014053
Published online 20 May 2015
  1. M.A. Aronna and F. Rampazzo, A note on systems with ordinary and impulsive controls. IMA J. Math. Control Inf. (2014) DOI:10.1093/imamci/dnu033. [Google Scholar]
  2. A.V. Arutyunov, Optimality Conditions: Abnormal and Degenerate Problems. Kluwer Academic Publishers, Dordrecht, Boston, London (2000). [Google Scholar]
  3. A.V. Arutyunov and S.M. Aseev, State constraints in optimal control. The degeneracy phenomenon. Systems Control Lett. 26 (1995) 267–273. [CrossRef] [MathSciNet] [Google Scholar]
  4. A.V. Arutyunov, V. Dykhta and F.L. Pereira, Necessary conditions for impulsive nonlinear optimal control problems without a priori normality assumptions. J. Optimization Theory Appl. 124 (2005) 55–77. [CrossRef] [Google Scholar]
  5. A.V. Arutyunov, V. Jacimovic and F.L. Pereira, Second order necessary conditions for optimal impulsive control problems. J. Dynam. Control Syst. 9 (2003) 131–153. [CrossRef] [Google Scholar]
  6. A.V. Arutyunov, D. Karamzin and F.L. Pereira, A nondegenerate maximum principle for the impulse control problem with state constraints. SIAM J. Control Optim. 43 (2005) 1812–1843. [CrossRef] [MathSciNet] [Google Scholar]
  7. A.V. Arutyunov, D.Yu. Karamzin and F.L. Pereira, On impulsive control problems with constraints: control of jumps of systems. J. Math. Sci. 165 (2010) 654–688. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.V. Arutyunov, D.Yu. Karamzin and F.L. Pereira, On the extension of classical calculus of variations and optimal control to problems with discontinuous trajectories, in Proc. of the 51st IEEE Conference on Decision and Control, CDC 2012. Maui, Hawaii (2012) 6406–6411. [Google Scholar]
  9. A.V. Arutyunov, D.Yu. Karamzin and F.L. Pereira, Pontryagin’s maximum principle for constrained impulsive control problems. Nonlin. Anal. 75 (2012) 1045–1057. [Google Scholar]
  10. A.V. Arutyunov and N.T. Tynyanskiy, The maximum principle in a problem with phase constraints. Soviet J. Comput. Systems Sci. 23 (1985) 28–35. [MathSciNet] [Google Scholar]
  11. A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields. J. Optimization Theory Appl. 71 (1991) 67–83. [Google Scholar]
  12. A. Bressan, and F. Rampazzo, On differential systems with vector-valued impulsive controls. Boll. Un. Mat. Ital. B 72 (1988) 641–656. [Google Scholar]
  13. W.J. Code and P.D. Loewen, Optimal control of non-convex Measure-driven differential inclusions. Set-Valued Var. Anal. 19 (2011) 203–235. [CrossRef] [MathSciNet] [Google Scholar]
  14. W.J. Code and G.N. Silva, Closed loop stability of measure-driven impulsive control systems. J. Dyn. Control Syst. 16 (2010) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  15. V.A. Dykhta and O.N. Samsonyuk, Optimal Impulse Control with Applications. Fizmatlit, Moscow (2000) [in Russian]. [Google Scholar]
  16. N. Forcadel, Z. Rao and H. Zidani, State-constrained optimal control problems of impulsive differential equations. Appl. Math. Optim. 68 (2013) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  17. A.B. Kurzhanski and A.N. Daryin, Dynamic programming for impulse controls. Ann. Rev. Control 32 (2008) 213–227. [CrossRef] [Google Scholar]
  18. D.F. Lawden, Optimal Trajectories for Space Navigation. Butterworth, London (1963). [Google Scholar]
  19. B.M. Miller and E.Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems. Kluwer Academic/Plenum Publishers, New York (2003). [Google Scholar]
  20. B. Mordukhovich, Existence of optimal controls. Itogi Nauki Tech. Sovr. Prob. Mat. 6 (1976) 207–261. (Russian); English transl. in J. Soviet Math. 7 (1977) 850–886. [Google Scholar]
  21. B. Mordukhovich, Variational Analysis and Generalized Differentiation. Springer-Verlag, Berlin (2006). [Google Scholar]
  22. F.L. Pereira and G.N. Silva, Necessary conditions of optimality for vector-valued impulsive control problems. Syst. Control Lett. 40 (2000) 205–215. [CrossRef] [Google Scholar]
  23. F.L. Pereira and G.N. Silva, Stability for impulsive control systems. Dyn. Syst. 17 (2002) 421–434. [CrossRef] [MathSciNet] [Google Scholar]
  24. F.L. Pereira, G.N. Silva and V.A. de Oliveira, Invariance for impulsive control systems. Autom. Remote Control 69 (2008) 788–800. [CrossRef] [MathSciNet] [Google Scholar]
  25. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, Mathematical Theory Optimal Processes. Classics Sov. Math. Nauka, Moscow (1983). [Google Scholar]
  26. G.N. Silva and R.B. Vinter, Measure driven differential inclusions. J. Math. Anal. Appl. 202 (1996) 727–746. [CrossRef] [Google Scholar]
  27. G.N. Silva and R.B. Vinter, Necessary conditions for optimal impulsive control problems. SIAM J. Control Optim. 35 (1997) 1829-1846. [CrossRef] [MathSciNet] [Google Scholar]
  28. R.B. Vinter, Optimal Control. Birkhäuser, Boston (2000). [Google Scholar]
  29. R.B. Vinter and F.L. Pereira, A maximum principle for optimal processes with discontinuous trajectories. SIAM J. Control Optim. 26 (1988) 205–229. [CrossRef] [MathSciNet] [Google Scholar]
  30. R.W. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures. SIAM J. Control Ser. A 3 (1965) 191–205. [Google Scholar]
  31. J. Warga, Variational problems with unbounded controls. SIAM J. Control Ser. A 3 (1965) 424–438. [Google Scholar]
  32. P.R. Wolenski and S. Zabic, A differential solution concept for impulsive systems. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 13B (2006) 199–210. [Google Scholar]
  33. P.R. Wolenski and S. Zabic, A sampling method and approximation results for impulsive systems. SIAM J. Control Optim. 46 (2007) 83–998. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.