Free Access
Issue
ESAIM: COCV
Volume 21, Number 3, July-September 2015
Page(s) 835 - 856
DOI https://doi.org/10.1051/cocv/2014052
Published online 20 May 2015
  1. H. Brézis, Analyse Fonctionnelle, Théorie et Applications. Dunod, Paris (1999). [Google Scholar]
  2. J.C. Cox and M. Rubinstein, Options Markets. Prentice-Hall. Englewood Cliffs, NJ (1985). [Google Scholar]
  3. J.I. Díaz, On the von Neumann problem and the approximate controllability of Stackelberg–Nash strategies for some environmental problems. Rev. R. Acad. Cien., Ser. A. Math. 96 (2002) 343–356. [Google Scholar]
  4. J.I. Díaz and J.-L. Lions, On the approximate controllability of Stackelberg–Nash strategies. Ocean circulation and pollution control: a mathematical and numerical investigation, Madrid, 1997. Springer, Berlin (2004) 17–27. [Google Scholar]
  5. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [CrossRef] [Google Scholar]
  6. E. Fernández-Cara, S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier–Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. [CrossRef] [MathSciNet] [Google Scholar]
  7. A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Note Series. Research Institute of Mathematics, Seoul National University, Seoul (1996). [Google Scholar]
  8. A.V. Fursikov and O.Y. Imanuvilov, Exact controllability of the Navier–Stokes and Boussinesq equations. Russian Math. Surveys 54 (1999) 565–618. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. González-Burgos, S. Guerrero and J.-P. Puel, Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Commun. Pure Appl. Anal. 8 (2009) 311–333. [MathSciNet] [Google Scholar]
  10. S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, A result concerning the global approximate controllability of the Navier–Stokes system in dimension 3. J. Math. Pures Appl. 98 (2012) 689–709. [CrossRef] [Google Scholar]
  11. F. Guillén-González, F.P. Marques-Lopes and M.A. Rojas-Medar, On the approximate controllability of Stackelberg–Nash strategies for Stokes equations. Proc. Amer. Math. Soc. 141 (2013) 1759–1773. [CrossRef] [MathSciNet] [Google Scholar]
  12. O.Y. Imanuvilov, Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim. Calc. Var. 6 (2001) 39–72. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  13. O.Y. Imanuvilov and M. Yamamoto, Carleman Estimate for a Parabolic Equation in a Sobolev Space of Negative Order and its Applications, Vol. 218 of Lect. Notes Pure Appl. Math. Dekker, New York (2001). [Google Scholar]
  14. J.-L. Lions, Contrôle de Pareto de systèmes distribués. Le cas d’évolution. C.R. Acad. Sci. Paris, Sér. I 302 (1986) 413–417. [Google Scholar]
  15. J.-L. Lions, Some remarks on Stackelberg’s optimization. Math. Models Methods Appl. Sci. 4 (1994) 477–487. [CrossRef] [Google Scholar]
  16. J.F. Nash, Noncooperative games. Ann. Math. 54 (1951) 286–295. [Google Scholar]
  17. V. Pareto, Cours d’économie politique. Rouge, Laussane, Switzerland (1896). [Google Scholar]
  18. A.M. Ramos, R. Glowinski and J. Periaux, Pointwise control of the Burgers equation and related Nash equilibria problems: A computational approach. J. Optim. Theory Appl. 112 (2001) 499–516. [CrossRef] [Google Scholar]
  19. A.M. Ramos, R. Glowinski and J. Periaux, Nash equilibria for the multiobjective control of linear partial differential equations. J. Optim. Theory Appl. 112 (2002) 457–498. [CrossRef] [MathSciNet] [Google Scholar]
  20. S.M. Ross, An introduction to mathematical finance. Options and other topics. Cambridge University Press, Cambridge (1999). [Google Scholar]
  21. H. Von Stalckelberg, Marktform und gleichgewicht. Springer, Berlin, Germany (1934). [Google Scholar]
  22. P. Wilmott, S. Howison and J. Dewynne, The mathematics of financial derivatives. Cambridge University Press, New York (1995). [Google Scholar]
  23. E. Zuazua, Exact controllability for the semilinear wave equation, J. Math. Pures Appl. 69 (1990) 1–31. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.