Free Access
Volume 21, Number 4, October-December 2015
Page(s) 989 - 1001
Published online 12 June 2015
  1. J.-P. Aubin and A. Cellina, Differential inclusions, Set-valued maps and viability theory. Vol. 264 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1984). [Google Scholar]
  2. J.-P. Aubin and H. Frankowska, Set-valued analysis. Birkhäuser, Boston (2008). [Google Scholar]
  3. V. Barbu and Th. Precupanu, Convexity and optimization in Banach spaces. Vol. 10 of Math. Appl. (East European Series). D. Reidel Publishing Co., Dordrecht, romanian edition (1986). [Google Scholar]
  4. Alberto Bressan and Giovanni Colombo, Extensions and selections of maps with decomposable values. Studia Math. 90 (1988) 69–86. [MathSciNet] [Google Scholar]
  5. H. Brézis, Analyse fonctionnelle. Théorie et applications. [Theory and applications]. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983). [Google Scholar]
  6. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Vol. 580 of Lect. Notes Math. Springer-Verlag, Berlin (1977). [Google Scholar]
  7. F. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). [Google Scholar]
  8. J.-M. Clérin, Équations d’état bien posées en contrôle bilinéaire (well-posed state equations in bilinear control). Rev. Roumaine Math. Pures Appl. 56 (2011) 115–136. [MathSciNet] [Google Scholar]
  9. J.-M. Clérin, Analyse de sensibilité d’un problème de contrôle optimal bilinéaire. Ann. Mat. Blaise Pascal 19 (2012) 177–196. [CrossRef] [Google Scholar]
  10. A. Fiacca, N.S. Papageorgiou and F. Papalini, On the existence of optimal controls for nonlinear infinite-dimensional systems. Czechoslovak Math. J. 48 (1998) 291–312. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps. Studia Math. 76 (1983) 163–174. [MathSciNet] [Google Scholar]
  12. I.M. Gel’fand and N.Ya. Vilenkin, Generalized functions. Vol. 4 of Applications of harmonic analysis. Translated by Amiel Feinstein. Academic Press, New York (1964). [Google Scholar]
  13. S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis: Theory. Vol. 419 of Math. Appl. Springer (1997). [Google Scholar]
  14. A.Y. Khapalov, Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term: a qualitative approach. SIAM J. Control Optim. 41 (2003) 1886–1900. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars (1969). [Google Scholar]
  16. E. Michael, Continuous selections 1. Ann. Math. 63 (1956) 361–382. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
  18. D. Trentin and J.-L. Guyaner, Vibration of a master plate with attached masses using modal sampling method. J. Acoust. Soc. Am. 96 (1994) 235–245. [CrossRef] [Google Scholar]
  19. D. Willett and J.S.W. Wong, On the discrete analogues of some generalizations of Gronwall’s inequality. Monatsh. Math. 69 (1965) 362–367. [CrossRef] [MathSciNet] [Google Scholar]
  20. Y.-Y. Yu, Vibrations of elastic plates. Springer (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.