Free Access
Volume 21, Number 4, October-December 2015
Page(s) 1002 - 1028
Published online 12 June 2015
  1. E.V. Amosova, Exact local controllability for equations of viscous gas dynamics. Differ. Equ. 47 (2011) 1776–1795. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Chaves-Silva, L. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control. J. Math. Pures Appl. 101 (2014) 198–222. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Chowdhury, Approximate Controllability for Linearized Compressible Navier−Stokes System. J. Math. Anal. Appl. 422 (2015) 1034–1057. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Chowdhury, D. Mitra, M. Ramaswamy and M. Renardy, Null controllability of the Linearized Compressible Navier−Stokes System in One Dimension. J. Differ. Equ. 257 (2014) 3813–3849. [CrossRef] [Google Scholar]
  5. S. Chowdhury, M. Ramaswamy and J.P. Raymond, Controllability and stabilizability of the linearized compressible Navier−Stokes System in one dimension. SIAM J. Control Optim. 50 (2012) 2959–2987. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.M. Coron, Control and Nonlinearity. AMS, Math. Surv. Monogr. 136 (2007). [Google Scholar]
  7. S. Ervedoza, O. Glass, S. Guerrero and J.-P. Puel, Local exact controllability for the one-dimensional compressible Navier−Stokes equation. Arch. Ration. Mech. Anal. 206 (2012) 189–238. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Feireisl, Dynamics of Viscous Compressible Fluids. Oxford Lect. Series Math. Appl. 26 (2014). [Google Scholar]
  9. F. Macià and E. Zuazua, On the lack of observability for wave equations: a Gaussian beam approach. Asymptot. Anal. 32 (2002) 126. [Google Scholar]
  10. P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control. SIAM J. Control Optim. 51 (2013) 660–684. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Micu, On the controllability of the linearized Benjamin−Bona−Mahony equation. SIAM J. Control Optim. 39 (2001) 1677–1696. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Micu and E. Zuazua, An Introduction to the Controllability of Partial Differential Equations. Available at˙pdi/ciencias/ezuazua/informweb/argel.pdf. [Google Scholar]
  13. J. Ralston, Gaussian beams and the propagation of singularities. Studies in partial differential equations, 206248, MAA Stud. Math. 23. Math. Assoc. America, Washington, DC (1982) 204–248. [Google Scholar]
  14. M. Renardy, A note on a class of observability problems for PDEs. Systems Control Lett. 58 (2009) 183–187. [Google Scholar]
  15. L. Rosier and P. Rouchon, On the controllability of a wave equation with structural damping. Int. J. Tomogr. Stat. 5 (2007) 79–84. [MathSciNet] [Google Scholar]
  16. J. Zabczyk, Mathematical control theory. An introduction. Modern Birkhäuser Classics. Reprint of the 1995 edition. Birkhäuser Boston, Inc., Boston, MA (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.