Free Access
Issue
ESAIM: COCV
Volume 22, Number 1, January-March 2016
Page(s) 188 - 207
DOI https://doi.org/10.1051/cocv/2015001
Published online 15 January 2016
  1. G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Ration. Mech. Anal. 202 (2011) 295–348. [CrossRef] [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Clarendon Press (2000). [Google Scholar]
  3. G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media 3 (2008) 567–614. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189 (2008) 469–544. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Cal. Var. Partial Differ. Equ. 40 (2008) 125–181. [Google Scholar]
  6. G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010) 257–290. [Google Scholar]
  7. M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Analysis 13 (2006) 151–167. [Google Scholar]
  8. G. Francfort and C.J. Larsen, Existence and convergence for quasistatic evolution in brittle fracture. Comm. Pure Appl. Math. 56 (2003) 1465–1500. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595 (2006) 55–91. [CrossRef] [MathSciNet] [Google Scholar]
  11. C.J. Larsen, Epsilon-stable quasistatic brittle fracture evolution. Comm. Pure Appl. Math. 63 (2010) 630–654. [MathSciNet] [Google Scholar]
  12. A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equ. 22 (2005) 73–99. [Google Scholar]
  13. A. Mielke, Finite Elastoplasticity, Lie Groups and Geodesics on SL(d), In Geometry, Dynamics, and Mechanics. Edited by P. Newton, A. Weinstein and P. Holmes. Springer-Verlag (2003) 61–90. [Google Scholar]
  14. A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodyn. 15 (2003) 351–382. [Google Scholar]
  15. A. Mielke, Evolution of Rate-Independent Systems. Handb. Differ. Equ. Evol. Equ. Elsevier B. V. 2 (2005) 461–559. [Google Scholar]
  16. A. Mielke, A Mathematical Framework for Generalized Standard Materials in the Rate-independent Case, in Multifield problems in Fluid and Solid Mechanics. In Ser. Lect. Notes Appl. Comput. Mechanics. Springer (2006). [Google Scholar]
  17. A. Mielke, Modeling and Analysis of Rate-independent Processes. Lipschitz Lectures. University of Bonn (2007). [Google Scholar]
  18. A. Mielke, Differential, Energetic and Metric Formulations for Rate-independent Processes. Lect. Notes of C.I.M.E. Summer School on Nonlinear PDEs and Applications. Cetraro (2008). [Google Scholar]
  19. A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 2 (2010) 585–615. [Google Scholar]
  20. A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM: COCV 18 (2012) 36–80. [CrossRef] [EDP Sciences] [Google Scholar]
  21. A. Mielke, R. Rossi and G. Savaré, Balanced Viscosity (BV) solutions to infinite-dimensional rate-independent systems. To appear in J. Eur. Math. Soc. (2016). [Google Scholar]
  22. A. Mielke and F. Theil, A Mathematical Model for Rate-Independent Phase Transformations with Hysteresis. In Models of Continuum Mechanics in Analysis and Engineering. Shaker Ver. Aachen (1999). [Google Scholar]
  23. A. Mielke and F. Theil, On rate-independent hysteresis models. NoDEA Nonlin. Differ. Equ. Appl. 11 (2004) 151–189. [CrossRef] [Google Scholar]
  24. A. Mielke, F. Theil and V. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162 (2002) 137–177. [CrossRef] [MathSciNet] [Google Scholar]
  25. M.N. Minh, Weak solutions to rate-independent systems: Existence and Regularity. Ph.D. thesis (2012). [Google Scholar]
  26. S. Müller, Variational Models for Microstructure and Phase Transitions, In Calculus of Variations and Geometric Evolution Problems, Cetraro. Springer, Berline (1999) 85–210. [Google Scholar]
  27. I.P. Natanson, Theory of Functions of a Real Variable. Frederick Ungar, New York (1965). [Google Scholar]
  28. M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation. Adv. Calc. Var. 3 (2010) 149–212. [CrossRef] [MathSciNet] [Google Scholar]
  29. F. Schmid and A. Mielke, Vortex pinning in super-conductivity as a rate-independent process. Eur. J. Appl. Math. (2005). [Google Scholar]
  30. U. Stefanelli, A variational characterization of rate-independent evolution. Math. Nach. 282 (2009) 1492–1512. [Google Scholar]
  31. R. Rossi and G. Savaré, A characterization of energetic and BV solutions to one-dimensional rate-independent systems. Discrete Contin. Dyn. Syst. Ser. S. 6 (2013) 167–191. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.