Free Access
Issue
ESAIM: COCV
Volume 22, Number 1, January-March 2016
Page(s) 236 - 266
DOI https://doi.org/10.1051/cocv/2015009
Published online 15 January 2016
  1. D. Amadori, L. Gosse and G. Guerra, Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal. 162 (2002) 327–366. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). [Google Scholar]
  3. F. Ancona and G.M. Coclite, On the attainable set for Temple class systems with boundary controls. SIAM J. Control Optim. 43 (2005) 2166–2190. [Google Scholar]
  4. F. Ancona and P. Goatin, Uniqueness and stability of L solutions for Temple class systems with boundary and properties of the attainable sets. SIAM J. Math. Anal. 34 (2002) 28–63. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Ancona and A. Marson, On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36 (1998) 290–312. [Google Scholar]
  6. F. Ancona and A. Marson, Asymptotic Stabilization of Systems of Conservation Laws by Controls Acting at a Single Boundary Point, in Control methods in PDE-dynamical systems. Vol. 426 of Contemp. Math. American Mathematical Society, Providence, RI (2007) 1–43 [Google Scholar]
  7. A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem. Oxford University Press, Oxford (2000). [Google Scholar]
  8. A. Bressan and G.M. Coclite, On the boundary control of systems of conservation laws. SIAM J. Control Optim. 41 (2002) 607–622. [Google Scholar]
  9. J.M. Coron, Control and Nonlinearity. Vol. 136 of Math. Surv. Monogr. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  10. J.M. Coron, O. Glass and Z. Wang, Exact boundary controllability for 1-D quasilinear hyperbolic systems with a vanishing characteristic speed. SIAM J. Control Optim. 48 (2009/10) 3105–3122. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations. SIAM J. Control Optim. 48 (2009) 1567–1599. [CrossRef] [MathSciNet] [Google Scholar]
  12. C.M. Dafermos, Generalized characteristic and the structure of solutions of hyperbolic conservation laws. Indiana Math. J. 26 (1977) 1097–1119. [Google Scholar]
  13. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 2nd edition. Springer-Verlag, Berlin (2005). [Google Scholar]
  14. E. Fernández-Cara and S. Guerrero, Null controllability of the Burgers system with distributed controls. Systems Control Lett. 56 (2007) 366–372. [CrossRef] [MathSciNet] [Google Scholar]
  15. O. Glass, On the controllability of the 1-D isentropic Euler equation. J. Eur. Math. Soc. 9 (2007) 427–486. [Google Scholar]
  16. O. Glass, On the controllability of the non-isentropic 1-D Euler equation. J. Differ. Equ. 257 (2014) 638–719. [CrossRef] [Google Scholar]
  17. T. Horsin, On the controllability of the Burgers equation, ESAIM: COCV 3 (1998) 83–95. [CrossRef] [EDP Sciences] [Google Scholar]
  18. H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws. Springer-Verlag, New York (2002). [Google Scholar]
  19. S.N. Kruzkov, First order quasilinear equations in several independent variables. Math. USSR Sbornik 10 (1970) 217–243. [Google Scholar]
  20. M. Léautaud, Uniform controllability of scalar conservation laws in the vanishing viscosity limit. SIAM J. Control Optim. 50 (2012) 1661–1699. [Google Scholar]
  21. V. Perrollaz, Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions. SIAM J. Control Optim. 50 (2012) 2025–2045. [CrossRef] [MathSciNet] [Google Scholar]
  22. V. Perrollaz, Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30 (2013) 879–915. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Robyr, SBV regularity of entropy solutions for a class of genuinely nonlinear scalar balance laws with non-convex flux function. J. Hyperbolic Differ. Equ. 5 (2008) 449–475. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.