Free Access
Volume 22, Number 1, January-March 2016
Page(s) 267 - 288
Published online 28 January 2016
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces, 2nd edn. Elsevier, Amsterdam (2003). [Google Scholar]
  2. K. Astala and D. Faraco, Quasiregular mappings and Young measures. In vol. 132. Proc. of Royal Soc. Edinb. A (2002) 1045–1056. [Google Scholar]
  3. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977) 337–403. [Google Scholar]
  4. J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. In vol. 88. Proc. of Roy. Soc. Edinb. A (1981) 315–328. [Google Scholar]
  5. J.M. Ball, A version of the fundamental theorem for Young measures. In: PDEs and Continuum Models of Phase Transition, edited by M. Rascle, D. Serre, M. Slemrod. Vol. 344 of Lect. Notes Phys. Springer, Berlin (1989) 207–215. [Google Scholar]
  6. J.M. Ball, Some open problems in elasticity. In Geometry, Mechanics, and Dynamics. Springer, New York (2002) 3–59. [Google Scholar]
  7. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100 (1988) 13–52. [Google Scholar]
  8. B. Benešová, M. Kružík and G. Pathó, Young measures supported on invertible matrices. Appl. Anal. 93 (2014) 105–123. [CrossRef] [Google Scholar]
  9. P.G. Ciarlet, Mathematical Elasticity, Vol. I of Three-dimensional Elasticity. North-Holland, Amsterdam (1988). [Google Scholar]
  10. P.G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97 (1987) 171–188. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Conti and G. Dolzmann, On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ration. Mech. Anal. 217 (2015) 413–437. [Google Scholar]
  12. B. Dacorogna, Direct Methods in the Calculus of Variations. 2nd edn. Springer (2008). [Google Scholar]
  13. S. Daneri and A. Pratelli, A planar bi-Lipschitz extension theorem. Adv. Calc. Var. 8 (2014) 221–266. [Google Scholar]
  14. S. Daneri and A. Pratelli, Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms. Ann. Inst. Henri Poincaré Anal. Nonlin. 31 (2014) 567–589. [CrossRef] [Google Scholar]
  15. I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications. Clarendon Press, Oxford (1995). [Google Scholar]
  16. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Inc. Boca Raton (1992). [Google Scholar]
  17. I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer (2007). [Google Scholar]
  18. M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. Vol. I and II. Springer (1998). [Google Scholar]
  19. D. Henao and C. Mora-Corral, Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Ration. Mech. Anal. 197 (2010) 619–655. [Google Scholar]
  20. T. Iwaniec, L.V. Kovalev and J. Onninen, Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Ration. Mech. Anal. 201 (2011) 1047–1067. [CrossRef] [Google Scholar]
  21. D. Kinderlehrer and P. Pedregal, Characterization of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115 (1991) 329–365. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59–90. [Google Scholar]
  23. K. Koumatos, F. Rindler and E. Wiedemann, Orientation-preserving Young measures. Preprint arXiv:1307.1007.v1 (2013). [Google Scholar]
  24. M. Kružík and M. Luskin, The computation of martensitic microstructure with piecewise laminates. J. Sci. Comput. 19 (2003) 293–308. [CrossRef] [Google Scholar]
  25. C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966). [Google Scholar]
  26. S. Müller, Variational models for microstructure and phase transisions. Vol. 1713 of Lect. Notes Math. Springer Berlin (1999) 85–210. [Google Scholar]
  27. S. Müller, Q. Tang and B.S. Yan, On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré Anal. Nonlin. 11 (1994) 217–243. [Google Scholar]
  28. S. Müller and S.J. Spector, An existence theory for nonlinear elasticity that allows for cavitation. Arch. Ration. Mech. Anal. 131 (1995) 1–66. [Google Scholar]
  29. P. Pedregal, Parametrized Measures and Variational Principles. Birkäuser, Basel (1997). [Google Scholar]
  30. T. Roubíček, Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin (1997). [Google Scholar]
  31. M.E. Schonbek, Convergence of solutions to nonlinear dispersive equations. Commun. Partial Differ. Equ. 7 (1982) 959–1000. [CrossRef] [MathSciNet] [Google Scholar]
  32. Q. Tang, Almost-everywhere injectivity in nonlinear elasticity. In vol. 109. Proc. Roy. Soc. Edinb. A (1988) 79–95. [Google Scholar]
  33. L. Tartar, Beyond Young measures. Meccanica 30 (1995) 505–526. [CrossRef] [MathSciNet] [Google Scholar]
  34. L. Tartar, Mathematical tools for studying oscillations and concentrations: From Young measures to H-measures and their variants. Multiscale problems in science and technology. Challenges to mathematical analysis and perspectives. Edited by N. Antoničet al. Proc. of the conference on multiscale problems in science and technology, held in Dubrovnik, Croatia, September 3-9, 2000. Springer, Berlin (2002). [Google Scholar]
  35. P. Tukia, The planar Schönflies theorem for Lipschitz maps. Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980) 49–72. [CrossRef] [MathSciNet] [Google Scholar]
  36. L.C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations. C. R. Soc. Sci. Lett. Varsovie, Classe III 30 (1937) 212–234. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.