Free Access
Issue |
ESAIM: COCV
Volume 22, Number 2, April-June 2016
|
|
---|---|---|
Page(s) | 439 - 472 | |
DOI | https://doi.org/10.1051/cocv/2015013 | |
Published online | 24 March 2016 |
- H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations: In Control and Systems Theory. Systems and Control: Foundations and Applications. Springer Verlag, NY (2003). [Google Scholar]
- A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Syst. 2 (1996) 321–358. [Google Scholar]
- A. Agrachev, Any sub-Riemannian metric has points of smoothness. Dokl. Akad. Nauk 424 (2009) 295–298. [Google Scholar]
- A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst. 18 (2012) 21–44. [Google Scholar]
- A. Agrachev, D. Barilari and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes). Preprint SISSA 09/2012/M. Available at http://hdl.handle.net/1963/5877 (2012). [Google Scholar]
- A. Agrachev, D. Barilari and L. Rizzi, The curvature: a variational approach. Preprint 1306.5318v4 (2013). [Google Scholar]
- A. Agrachev and R.V. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry. I. Regular extremals. J. Dyn. Control Syst. 3 (1997) 343–389. [Google Scholar]
- A. Agrachev and P.W.Y. Lee, Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds. Math. Ann. 360 (2014) 209–253. [CrossRef] [MathSciNet] [Google Scholar]
- A. Agrachev, L. Rizzi and P. Silveira, On conjugate times of LQ optimal control problems. J. Dyn. Control Syst. (2014) 1–17. [Google Scholar]
- A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Control Theory and Optimization, II. Vol. 87 of Encycl. Math. Sci. Springer-Verlag, Berlin (2004). [Google Scholar]
- A. Agrachev and I. Zelenko, Geometry of Jacobi curves. I. J. Dyn. Control Syst. 8 (2002) 93–140. [CrossRef] [Google Scholar]
- Y. Awais Butt, Y.L. Sachkov and A.I. Bhatti, Extremal Trajectories and Maxwell Strata in Sub-Riemannian Problem on Group of Motions of Pseudo-Euclidean Plane. J. Dyn. Control Syst. 20 (2014) 341–364. [CrossRef] [MathSciNet] [Google Scholar]
- D. Barilari, U. Boscain, G. Charlot and R.W. Neel. On the heat diffusion for generic Riemannian and sub-Riemannian structures. Preprint 1310.0911 (2013). [Google Scholar]
- D. Barilari, U. Boscain and R.W. Neel, Small-time heat kernel asymptotics at the sub-Riemannian cut locus. J. Differ. Geom. 92 (2012) 373–416. [Google Scholar]
- F. Baudoin, M. Bonnefont and N. Garofalo, A sub-riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Math. Ann. (2013) 1–28. [Google Scholar]
- F. Baudoin, M. Bonnefont, N. Garofalo and I.H. Munive, Volume and distance comparison theorems for sub-Riemannian manifolds. Preprint 1101.3590v5 (2014), To appear in J. Funct. Anal. (2015). [Google Scholar]
- F. Baudoin and N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. To appear in J. Eur. Math. Soc. (2014). [Google Scholar]
- F. Baudoin and J. Wang, Curvature-dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds. Potential Anal. 40 (2014) 163–193. [CrossRef] [MathSciNet] [Google Scholar]
- U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3,SO(3),SL(2) and lens spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. [CrossRef] [MathSciNet] [Google Scholar]
- V. Gershkovich and A. Vershik, Nonholonomic manifolds and nilpotent analysis. J. Geom. Phys. 5 (1988) 407–452. [CrossRef] [MathSciNet] [Google Scholar]
- V. Jurdjevic, Geometric Control Theory. Vol. 52 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge (1997). [Google Scholar]
- P.W.Y. Lee, C. Li and I. Zelenko, Measure contraction properties of Sasakian manifolds. Preprint 1304.2658v5 (2014); To appear in Discrete Contin. Dyn. Syst. Ser. A (2016). [Google Scholar]
- C. Li and I. Zelenko, Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries. J. Geom. Phys. 61 (2011) 781–807. [CrossRef] [MathSciNet] [Google Scholar]
- I. Moiseev and Y.L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 380–399. [CrossRef] [EDP Sciences] [Google Scholar]
- S.B. Myers, Riemannian manifolds with positive mean curvature. Duke Math. J. 8 (1941) 401–404. [CrossRef] [MathSciNet] [Google Scholar]
- S.-I. Ohta, On the curvature and heat flow on hamiltonian systems. Anal. Geom. Metr. Spaces 2 (2014) 81–114. [MathSciNet] [Google Scholar]
- S.-I. Ohta and K.-T. Sturm, Bochner–Weitzenböck formula and Li–Yau estimates on Finsler manifolds. Adv. Math. 252 (2014) 429–448. [CrossRef] [MathSciNet] [Google Scholar]
- L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes. Translated from the Russian by K.N. Trirogoff. Edited by L.W. Neustadt. Interscience Publishers John Wiley & Sons, Inc. New York, London (1962). [Google Scholar]
- L. Rifford, Ricci curvatures in Carnot groups. Math. Control Relat. Fields 3 (2013) 467–487. [CrossRef] [MathSciNet] [Google Scholar]
- Y.L. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 1018–1039. [CrossRef] [EDP Sciences] [Google Scholar]
- C. Villani, Optimal Transport. In Vol. 338 of Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Sciences]. [Google Scholar]
- B.Y. Wu and Y.L. Xin, Comparison theorems in Finsler geometry and their applications. Math. Ann. 337 (2007) 177–196. [CrossRef] [MathSciNet] [Google Scholar]
- I. Zelenko and C. Li, Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differ. Geom. Appl. 27 (2009) 723–742. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.