Issue |
ESAIM: COCV
Volume 22, Number 2, April-June 2016
|
|
---|---|---|
Page(s) | 417 - 438 | |
DOI | https://doi.org/10.1051/cocv/2015012 | |
Published online | 08 March 2016 |
- H. Amann, Multiplication in Sobolev and Besov Spaces. In Nonlinear Analysis. Scuola Norm. Sup. di Pisa Quaderni (1991) 27–50. [Google Scholar]
- T. Boggio, Sulle funzioni di Green d’ordine m. Rend. Circ. Mat. Palermo 20 (1905) 97–135. [CrossRef] [Google Scholar]
- J. Escher, Ph. Laurençot and Ch. Walker, Finite time singularity in a free boundary problem modeling MEMS. C. R. Acad. Sci. Paris Sér. I Math. 351 (2013) 807–812. [CrossRef] [Google Scholar]
- J. Escher, Ph. Laurençot and Ch. Walker, A parabolic free boundary problem modeling electrostatic MEMS. Arch. Ration. Mech. Anal. 211 (2014) 389–417. [CrossRef] [MathSciNet] [Google Scholar]
- J. Escher, Ph. Laurençot and Ch. Walker, Dynamics of a free boundary problem with curvature modeling electrostatic MEMS. Trans. Amer. Math. Soc. 367 (2015) 5693–5719. [CrossRef] [MathSciNet] [Google Scholar]
- P. Esposito, N. Ghoussoub and Y. Guo,Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS. Vol. 20 of Courant Lect. Notes Math. Courant Institute of Mathematical Sciences, New York (2010). [Google Scholar]
- D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Reprint of 1998 edition. Class. Math. Springer-Verlag, Berlin (2001). [Google Scholar]
- P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24 of Monogr. Stud. Math. Pitman, Boston (1985). [Google Scholar]
- H.-C. Grunau, Positivity, change of sign and buckling eigenvalues in a one-dimensional fourth order model problem. Adv. Differ. Equ. 7 (2002) 177–196. [Google Scholar]
- Z. Guo, B. Lai and D. Ye, Revisiting the biharmonic equation modelling electrostatic actuation in lower dimensions. Proc. Amer. Math. Soc. 142 (2014) 2027–2034. [CrossRef] [MathSciNet] [Google Scholar]
- A. Henrot and M. Pierre, Variation et Optimisation de Formes, vol. 24 of Math. Appl. Springer, Berlin (2005). [Google Scholar]
- Ph. Laurençot and Ch. Walker, A stationary free boundary problem modeling electrostatic MEMS. Arch. Ration. Mech. Anal. 207 (2013) 139–158. [CrossRef] [MathSciNet] [Google Scholar]
- Ph. Laurençot and Ch. Walker, A free boundary problem modeling electrostatic MEMS: I. Linear bending effects. Math. Ann. 360 (2014) 307–349. [CrossRef] [MathSciNet] [Google Scholar]
- Ph. Laurençot and Ch. Walker, A fourth-order model for MEMS with clamped boundary conditions. Proc. London Math. Soc. 109 (2014) 1435–1464. [CrossRef] [MathSciNet] [Google Scholar]
- Ph. Laurençot and Ch. Walker, Sign-preserving property for some fourth-order elliptic operators in one dimension or in radial symmetry. J. Anal. Math. 127 (2015) 69–89. [CrossRef] [MathSciNet] [Google Scholar]
- Ph. Laurençot and Ch. Walker, A free boundary problem modeling electrostatic MEMS: II. Nonlinear bending effects. Math. Mod. Meth. Appl. Sci. 24 (2014) 2549–2568. [CrossRef] [Google Scholar]
- A.E. Lindsay and J. Lega, Multiple quenching solutions of a fourth order parabolic PDE with a singular nonlinearity modeling a MEMS capacitor. SIAM J. Appl. Math. 72 (2012) 935–958. [CrossRef] [MathSciNet] [Google Scholar]
- M.P. Owen, Asymptotic first eigenvalue estimates for the biharmonic operator on a rectangle. J. Differ. Equ. 136 (1997) 166–190. [CrossRef] [Google Scholar]
- J.A. Pelesko and D.H. Bernstein, Modeling MEMS and NEMS. Chapman & Hall/CRC, Boca Raton (2003). [Google Scholar]
- V. Šverák, On optimal shape design, J. Math. Pures Appl. 72 (1993) 537–551. [Google Scholar]
- E. Zeidler, Nonlinear Functional Analysis and its Applications: I: Fixed-Point Theorems. Springer (1986). [Google Scholar]
- E. Zeidler, Applied Functional Analysis. Main Principles and Their Applications. Springer, New York (1995). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.