Free Access
Issue
ESAIM: COCV
Volume 22, Number 3, July-September 2016
Page(s) 610 - 624
DOI https://doi.org/10.1051/cocv/2015018
Published online 06 April 2016
  1. J.A. Appleby and X.R. Mao, Stochastic stabilisation of functional differential equations. Syst. Control Lett. 54 (2005) 1069–1081. [CrossRef] [Google Scholar]
  2. J.A. Appleby, X.R. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise. IEEE Trans. Automatic Control 53 (2008) 683–691. [CrossRef] [Google Scholar]
  3. L. Arnold, Stochastic Differential Equations: Theory and Applications. John Wiley & Sons, New York (1974). [Google Scholar]
  4. L. Arnold, H. Crauel and V. Wihstutz, Stabilization of linear systems by noise. SIAM J. Control Optim. 21 (1983) 451–461. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Bodová, and C.R. Doering, Noise-induced statistically stable oscillations in a deterministically divergent nonlinear dynamical system. Commun. Math. Sci. 10 (2012) 137–157. [CrossRef] [Google Scholar]
  6. T. Caraballo, M.J. Garrido-Atienza and J. Real, Stochastic stabilization of differential systems with general decay rate. Syst. Control Lett. 48 (2003) 397–406. [CrossRef] [Google Scholar]
  7. I. Karafyllis, Non-uniform stabilization of control systems. IMA J. Math. Control Information 19 (2002) 419–444. [CrossRef] [Google Scholar]
  8. R.Z. Khasminskii, Stochastic Stability of Differential Equations. Edited by Sijthoff and Noordhoff, Alphen aan den Rijn (1980), translation of the Russian edition, Nauka, Moscow (1969). [Google Scholar]
  9. W. Lin and C.J. Qian, Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework. IEEE Trans. Automatic Control 47 (2002) 757–774. [CrossRef] [Google Scholar]
  10. Y.G. Liu, Global asymptotic regulation via time-varying output feedback for a class of uncertain nonlinear systems. SIAM J. Control Optim. 51 (2013) 4318–4342. [CrossRef] [MathSciNet] [Google Scholar]
  11. Y.G. Liu, Global finite-time stabilization via time-varying feedback for uncertain nonlinear systems. SIAM J. Control Optim. 52 (2014) 1886–1913. [CrossRef] [MathSciNet] [Google Scholar]
  12. F.Z. Li and Y.G. Liu, Global stabilization via time-varying output-feedback for stochastic nonlinear systems with unknown growth rate. Syst. Control Lett. 77 (2015) 69–79. [CrossRef] [Google Scholar]
  13. X.R. Mao, Stochastic stabilization and destabilization. Syst. Control Lett. 23 (1994) 279–290. [CrossRef] [Google Scholar]
  14. X.R. Mao, Stochastic Differential Equations and Their Applications. Horwood Publishing, Chichester (1997). [Google Scholar]
  15. X.R. Mao and C.G. Yuan, Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006). [Google Scholar]
  16. R. Pongvuthithum, A time-varying feedback approach for triangular systems with nonlinear parameterization. SIAM J. Control Optim. 48 (2009) 1660–1674. [CrossRef] [MathSciNet] [Google Scholar]
  17. C.J. Qian, C.B. Schrader and W. Lin, Global Regulation of a Class of Uncertain Nonlinear Systems Using Output Feedback, in Proc. of the American control Conference. Denver, Colorado (2003) 1542–1547. [Google Scholar]
  18. M. Scheutzow, Noise can create periodic behavior and stabilize nonlinear diffusions. Stoch. Process. Their Appl. 20 (1985) 323–331. [CrossRef] [Google Scholar]
  19. M. Scheutzow, Stabilization and destabilization by noise in the plane. Stoch. Anal. Appl. 11 (1993) 97–113. [CrossRef] [Google Scholar]
  20. Y.F. Song, Q. Yin, Y. Shen and G. Wang, Stochastic suppression and stabilization of nonlinear differential systems with general decay rate. J. Franklin Institute 350 (2013) 2084–2095. [CrossRef] [Google Scholar]
  21. F.K. Wu and S.G. Hu, Suppression and stabilisation of noise. Int. J. Control 82 (2009) 2150–2157. [CrossRef] [Google Scholar]
  22. G. Yin, G.L. Zhao and F.K. Wu, Regularization and stabilization of randomly switching dynamic systems. SIAM J. Appl. Math. 72 (2012) 1361–1382. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.