Free Access
Volume 22, Number 3, July-September 2016
Page(s) 625 - 669
Published online 27 April 2016
  1. A. Aalto, Spatial discretization error in Kalman filtering for discrete-time infinite dimensional systems. Technical report (2014). [Google Scholar]
  2. A.V. Balakrishnan, Stochastic Optimization Theory in Hilbert Spaces – 1. Appl. Math. Opt. 1 (1974) 97–120. [CrossRef] [Google Scholar]
  3. P. Binev, A. Cohen, P. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 42 (2011) 1457–1472. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Boyaval, C. Le Bris, Y. Maday, N.C. Nguyen and A.T. Patera, A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3187–3206. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Boyaval, C. Le Bris, T. Lelièvre, Y. Maday, N.C. Nguyen and A.T. Patera, Reduced basis techniques for stochastic problems. Arch. Comput. Method E 17 (2010) 435–454. [CrossRef] [Google Scholar]
  6. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011). [Google Scholar]
  7. A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: M2AN 46 (2012) 595–603. [CrossRef] [EDP Sciences] [Google Scholar]
  8. Y. Cao, J. Zhu, I.M. Navon and Z. Luo, A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. Int. J. Numer. Meth. Fluids 53 (2006) 1571–1583. [Google Scholar]
  9. J. Chandrasekar, I.S. Kim, D.S. Bernstein and A.J. Ridley, Cholesky-Based Reduced-Rank Square-Root Kalman Filtering. In 2008 American Control Conference Seattle, USA (2008). [Google Scholar]
  10. C.K. Chui and G. Chen, Kalman Filtering with Real-Time Applications. Springer (2009). [Google Scholar]
  11. S.E. Cohn, Dynamics of short-term univariate forecast error covariances. Mon. Weather Rev. 121 (1993) 3123–3149. [CrossRef] [Google Scholar]
  12. S.E. Cohn and D.P. Dee, Observability of discretized partial differential equations. SIAM J. Numer. Anal. 25 (1988) 586–617. [CrossRef] [Google Scholar]
  13. S.E. Cohn and R. Todling, Approximate Data Assimilation Schemes for Stable and Unstable Dynamics. J. Meteorol. Soc. Jpn 74 (1996) 63–75. [CrossRef] [Google Scholar]
  14. R. Curtain, A survey of infinite-dimensional filtering. SIAM Rev. 17 (1975) 395–411. [CrossRef] [MathSciNet] [Google Scholar]
  15. R.F. Curtain, Stochastic Evolution Equations with General White Noise Disturbance. J. Math. Anal. Appl. 60 (1977) 570–595. [CrossRef] [Google Scholar]
  16. D.N. Daescu and I.M. Navon, A Dual-Weighted Approach to Order Reduction in 4DVAR Data Assimilation. Mon. Weather Rev. 136 (2007) 1026–1041. [CrossRef] [Google Scholar]
  17. M. Dihlmann, Adaptive Reduced Basis Method for Parameter Optimization and State Estimation of Parameterized Evolution Problems. Ph.D. thesis, University of Stuttgart (2015). [Google Scholar]
  18. M. Dihlmann, M. Drohmann and B. Haasdonk, Model reduction of parametrized evolution problems using the reduced basis method with adaptive time-partitioning. In Proc. of ADMOS 2011 (2011). [Google Scholar]
  19. M. Drohmann and K. Carlberg, The ROMES method for statistical modeling of reduced-order-model error. Technical report, Sandia National Labs (2014). [Google Scholar]
  20. J.L. Eftang, D.J. Knezevic and A.T. Patera, An hp certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dyn. 17 (2011) 395–422. [Google Scholar]
  21. P.L. Falb, Infinite Dimensional Filtering: The Kalman Bucy-Filter in Hilbert Space. Inform. Control. 11 (1967) 103–138. [Google Scholar]
  22. B.F. Farrell and P.J. Ioannou, State estimation using a reduced-order Kalman filter. J. Atmos. Sci. 58 (2001) 3666–3680. [CrossRef] [Google Scholar]
  23. R.J. Fitzgerald, Divergence of the Kalman Filter. IEEE T. Automat. Contr. 16 (1971) 736–747. [Google Scholar]
  24. A. Germani, L. Jetto and M. Piccioni, Galerkin approximation of optimal linear filtering of infinite-dimensional linear systems. SIAM J. Control. Optim. 26 (1988) 1287–1305. [CrossRef] [MathSciNet] [Google Scholar]
  25. M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157–181. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  26. B. Haasdonk, Convergence rates of the POD-Greedy method. ESAIM: M2AN 47 (2013) 859–873. [CrossRef] [EDP Sciences] [Google Scholar]
  27. B. Haasdonk, M. Dihlmann and M. Ohlberger, A training set and multiple basis generation approach for parametrized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. 17 (2012) 423–442. [Google Scholar]
  28. B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: M2AN 42 (2008) 277–302. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  29. B. Haasdonk, K. Urban and B. Wieland, Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loéve Expansion. SIAM J. Uncertainty Quantification 1 (2013) 79–105. [CrossRef] [Google Scholar]
  30. E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations. Springer Ser. Comput. Math. Springer (2009). [Google Scholar]
  31. A.H. Jazwinski, Stochastic Processes and Filtering Theory. Academic Press (1970). [Google Scholar]
  32. R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng-T ASME 82 (1960) 35–45. [Google Scholar]
  33. I. Kim, J. Chandrasekar, H.J. Palanthandalam, A. Ridley and D.S. Bernstein. State estimation for large-scale systems based on reduced-order error-covariance propagation. In Amer. Contr. Conf. New York (2007). [Google Scholar]
  34. L.B. Koralov and Y.G. Sinai, Theory of Probability and Random Processes. Springer (2007). [Google Scholar]
  35. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117–148. [CrossRef] [MathSciNet] [Google Scholar]
  36. W. Lee, D. McDougall and A.M. Stuart, Kalman filtering and smoothing for linear wave equations with model error. Inverse Probl. 27 (2011) 095008. [CrossRef] [Google Scholar]
  37. Z. Li and I.M. Navon, Optimality of variational data assimilation and its relationship with the Kalman filter and smoother. Q. J. R. Meteorol. Soc. 127 (2001) 661–683. [Google Scholar]
  38. M. Loève, Probability Theory I. Springer (1987). [Google Scholar]
  39. Y. Maday and O. Mula, A generalized empirical interpolation method: application of reduced basis techniques to data assimilation. In Anal. Numer. Partial Differ. Equ. Springer (2013). [Google Scholar]
  40. Y. Maday, A.T. Patera, J.D. Penn and M. Yano, A Parametrized-Background Data-Weak approach to variational data assimilation: Formulation, analysis, and application to acoustics. Int. J. Numer. Meth. Engng. 102 (2015) 933–965. [Google Scholar]
  41. R.K. Mehra, On the Identification of Variances and Adaptive Kalman Filtering. IEEE T. Automat. Contr. 15 (1970) 175–184. [Google Scholar]
  42. P. Moireau and D. Chapelle, Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems. ESAIM: COCV 17 (2010) 380–405. [Google Scholar]
  43. P. Moireau, D. Chapelle and P. Le Tallec, Joint state and parameter estimation for distributed mechanical systems. Comput. Methods. Appl. Mech. Engng. 197 (2008) 659–677. [Google Scholar]
  44. M. Morf, G.S. Sighu and T. Kailath, Some New Algortihms for Recursive Estimation in Constant, Linear, Discrete-Time Systems. IEEE Trans. Automat. Contr. 19 (1974) 315–323. [CrossRef] [Google Scholar]
  45. K.M. Nagpal, R.E. Helmick and C.S. Sims, Reduced-order estimation Part 1. Filtering. Int. J. Control 45 (1987) 1867–1888. [CrossRef] [Google Scholar]
  46. C.F. Price, An Analysis of the Divergence Problem in the Kalman Filter. IEEE T. Automat. Contr. 13 (1968) 699–702. [CrossRef] [Google Scholar]
  47. B Ristic, S. Arulampalam and N. Gordon, Beyond the Kalman Filter. Particle Filters for Tracking Applications. Artech House (2004). [Google Scholar]
  48. E.M. Rønquist and A.T. Patera, Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data. C.R. Acad. Sci. Paris, Ser I 350 (2012) 543–547. [CrossRef] [Google Scholar]
  49. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced Basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Meth. Eng. 15 (2008) 229–275. [CrossRef] [MathSciNet] [Google Scholar]
  50. D. Simon, Optimal State Estimation, Kalman, H, and Nonlinear Approaches. John Wiley&Sons (2006). [Google Scholar]
  51. H.W. Sorenson, On Applications of Kalman Filtering. IEEE T. Automat. Contr. 28 (1983) 254–255. [CrossRef] [Google Scholar]
  52. R. Todling and S.E. Cohn, Suboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman filter. Monthly Weather Review 122 (1994) 2530–2557. [CrossRef] [Google Scholar]
  53. K. Urban and A.T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83 (2014) 1599–1615. [CrossRef] [Google Scholar]
  54. M. Verlaan and A.W. Heemink, Tidal flow forecasting using reduced rank square root filters. Stoch. Hydrol. Hydraul. 11 (1997) 349–368. [CrossRef] [Google Scholar]
  55. K. Veroy, C. Prud’homme, D.V. Rovas and A.T. Patera,A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In Proc. of 16th AIAA computational fluid dynamics conference (2003) 2003–3847. [Google Scholar]
  56. D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press (2010). [Google Scholar]
  57. K. Yosida, Functional Analysis. Springer (1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.