Free Access
Issue
ESAIM: COCV
Volume 22, Number 3, July-September 2016
Page(s) 670 - 687
DOI https://doi.org/10.1051/cocv/2015020
Published online 27 April 2016
  1. L. Ambrosio and S. Di Marino, Equivalent definitions of BV space and of total variation on metric measure spaces. J. Funct. Anal. 266 (2014) 4150–4188. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savarè, Gradient Flows in Metric Spaces and in the Wasserstein Spaces of Probability Measures. Birkhäuser (2005). [Google Scholar]
  3. L. Ambrosio, N. Gigli and G. Savaré, Density of lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoamericana 29 (2013) 969–986. [CrossRef] [Google Scholar]
  4. L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195 (2014) 289–391. [CrossRef] [MathSciNet] [Google Scholar]
  5. L. Brasco and F. Santambrogio, An equivalent path functional formulation of branched transportation problems. Discrete Contin. Dyn. Syst. 29 (2011) 845–871. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Figalli, W. Gangbo and T. Yolcu, A variational method for a class of parabolic PDEs. Ann. Sc. Norm. Super. Pisa Cl. Sci. 10 (2011) 207–252. [MathSciNet] [Google Scholar]
  7. K. Kuwada, Gradient estimate for Markov kernels, Wasserstein control and Hopf-Lax formula. RIMS Kôkyûroku Bessatsu, B43 (2013) 61–68. [Google Scholar]
  8. S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differ. Eq. 28 (2007) 85–120. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces. Marcel Dekker Inc. (1991). [Google Scholar]
  10. R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 395–431. [MathSciNet] [Google Scholar]
  11. D.W. Stroock, Probability Theory. 2nd edition. Cambridge University Press (2011). [Google Scholar]
  12. K.T. Sturm, Generalized Orlicz spaces and Wasserstein distances for convex-concave scale functions. Bull. Sci. Math. 135 (2011) 795–802. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.