Free Access
Volume 22, Number 3, July-September 2016
Page(s) 872 - 882
Published online 14 June 2016
  1. B. Bonnard, O. Cots and N. Shcherbakova, The Serret-Andoyer Riemannian metric and Euler–Poinsot rigid body motion. Math. Control Relat. Fields 3 (2013) 287–302. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Bonnard, O. Cots, J.B. Pomet and N. Shcherbakova, Riemannian metrics on 2D-manifolds related to the Euler–Poinsot rigid body motion. ESAIM: COCV 20 (2014) 864–893. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. S. Chandrasekhar, Ellipsoidal figures of equilibrium. Yale University Press, New Haven (1969). [Google Scholar]
  4. W. Cong, J. Llibre and X. Zhang, Generalized rational first integrals of analytic differential systems. J. Differ. Equ. 251 (2011) 2770–2788. [CrossRef] [Google Scholar]
  5. A. Goriely, Integrability and nonintegrability of dynamical systems. Vol. 19 of Adv. Ser. Nonlin. Dyn. World Sci. Publ. Co., Inc. River Edge, NJ (2001). [Google Scholar]
  6. Y.N. Fedorov and V.V. Kozlov, Various Aspects of n-Dimensional Rigid Body Dynamics. In Dynamical Systems in Classical Mechanics, edited by V.V. Kozlov. Vol. 168 of Amer. Math. Soc. Transl. Ser. 2 (1991). [Google Scholar]
  7. J. Llibre, S. Walcher and X. Zhang, Local Darboux first integrals of analytic differential systems. Bull. Sciences Math. 138 (2014) 71–88. [CrossRef] [Google Scholar]
  8. S.V. Manakov, A remark on the integration of the Eulerian equations of the dynamics of an n-dimensional rigid body. Funkcional Anal. i Prilozen. V. 6 (1972) 83–84. [English transl. Funct. Anal. Appl. 10 (1977) 328–329.] [Google Scholar]
  9. P. Negrini, Integrability, nonintegrability and chaotic motions for a system motivated by the Riemann ellipsoids problem. Regul. Chaotic Dyn. 8 (2003) 349–374. [CrossRef] [MathSciNet] [Google Scholar]
  10. B. Riemann, Ein Beitrag zu den Untersuchungen über die Bewegung eines flüssigen gleichartigen Ellipsoides, Aus dem neunten Bande der Ahandlungen der Königlichen Gesellshaft der Wissenshaften zu Göttingen (1861). (Transcribed by D.R. Wilkins (2000)). [Google Scholar]
  11. T. Wolf, Integrable quadratic Hamiltonians with a linear Lie-Poisson bracket, Gen. Relativity Gravitation 38 (2006) 1115–1127. [CrossRef] [MathSciNet] [Google Scholar]
  12. X. Zhang, Local first integrals for systems of differential equations. J. Phys. A 36 (2003) 12243–12253. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.