Issue
ESAIM: COCV
Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 921 - 938
DOI https://doi.org/10.1051/cocv/2016029
Published online 05 August 2016
  1. A. Agrachev and M. Caponigro, Controllability on the group of diffeomorphisms. Ann. Inst. Henri Poincaré, Anal. Non Lin. 26 (2009) 2503–2509. [CrossRef] [Google Scholar]
  2. A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint. Springer (2004). [Google Scholar]
  3. A. Agrachev and A. Sarychev, The control of rotation for asymmetric rigid body. Probl. Control Inform. Theory 12 (1983) 335–347. [Google Scholar]
  4. A. Agrachev and A. Sarychev, Solid Controllability in Fluid Dynamics, in Instabilities in Models Connected with Fluid Flows I, edited by C. Bardos and A. Sarychev. Springer (2008) 1–35. [Google Scholar]
  5. J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982) 575–597. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Beauchard, J.-M. Coron and P. Rouchon, Controllability issues for continuous-spetrum systems and ensemble controllability of Bloch equations. Comm. Math. Phys. 296 (2010) 525–557. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Bonnard, Contrôllabilité des systèmes non linéaires. C.R. Acad. Sci. 292 (1981) 535–537. [Google Scholar]
  8. B. Bonnard, Contrôle de l’attitude d’un satellite rigide, in Outils et modèles mathématiques pour l’automatique, l’analyse de systèmes et le traitement du signal, 3 CNRS (1983) 649–658. [Google Scholar]
  9. P.M. Dudnikov and S.N. Samborski, Criterion of controllability for systems in Banach space (generalization of Chow’s theorem). Ukrain. Matem. Zhurnal 32 (1980) 649–653 (in Russian). [Google Scholar]
  10. Yu. Ledyaev, On Infinite-Dimensional Variant of Rashevsky−Chow Theorem. Dokl. Akad. Nauk 398 (2004) 735–737. [MathSciNet] [Google Scholar]
  11. J.S. Li and N. Khaneja, Noncommuting vector fields, polynomial approximations and control of inhomogeneous quantum ensembles, Preprint arxiv:0510012v1 [quant-ph] (2005). [Google Scholar]
  12. J.S. Li and N. Khaneja, Control of inhomogeneous quantum ensembles. Phys.Rev. A 73 (2006) 030302. [Google Scholar]
  13. J.S. Li and N. Khaneja, Ensemble Control of Bloch Equations. IEEE Trans. Automatic Control 54 (2009) 528–536. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Lobry, Une propriete generique des couples de champs de vecteurs. Czechoslovak Mathem. J. (1972) 230–237. [Google Scholar]
  15. C. Lobry, Controllability of nonlinear systems on compact manifolds. SIAM J. Control 12 (1974) 1–4. [CrossRef] [MathSciNet] [Google Scholar]
  16. M.K. Salehani and I. Markina, Controllability on Infinite-Dimensional Manifolds: a Chow-Rashevsky theorem. Acta Appl. Math. 134 (2014) 229–246. [CrossRef] [MathSciNet] [Google Scholar]
  17. H.J. Sussmann, Some properties of vector fields, which are not altered by small perturbations. J. Differ. Eq. 20 (1976) 292–315. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.