Issue
ESAIM: COCV
Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 913 - 920
DOI https://doi.org/10.1051/cocv/2016057
Published online 21 October 2016
  1. T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55 (1976) 269–296. [MathSciNet] [Google Scholar]
  2. A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm. Pure Appl. Math. 41 (1988) 253–294. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [CrossRef] [MathSciNet] [Google Scholar]
  4. K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232 (2006) 328–389. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Beauchard, J.-M. Coron and P. Rouchon, Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations. Comm. Math. Phys. 296 (2010) 525–557. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Beauchard and M. Morancey, Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Math. Control Relat. Fields 4 (2014) 125–160. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Brezis and J.-M. Coron, Multiple solutions of H-systems and Rellich’s conjecture. Comm. Pure Appl. Math. 37 (1984) 149–187. [CrossRef] [MathSciNet] [Google Scholar]
  8. H. Brezis and J.-M. Coron, Convergence of solutions of H-systems or how to blow bubbles. Arch. Rational Mech. Anal. 89 (1985) 21–56. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Brezis, J.-M. Coron and E.H. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649–705. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983) 437–477. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.W. Brockett, Asymptotic stability and feedback stabilization. In Differential geometric control theory (Houghton, Mich., 1982), edited by R.W. Brockett, R.S. Millman and H.J. Sussmann. Vol. 27 of Progr. Math. Birkhäuser Boston, Boston, MA (1983) 181–191. [Google Scholar]
  12. E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46 (2007) 877–899. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 457–475. [CrossRef] [Google Scholar]
  14. J.-M. Coron, Topologie et cas limite des injections de Sobolev. C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 209–212. [Google Scholar]
  15. J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. Henri Poincaré Anal. Non Linéaire 7 (1990) 335–344. [Google Scholar]
  16. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295–312. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.-M. Coron, Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 271–276. [Google Scholar]
  18. J.-M. Coron, Linearized control systems and applications to smooth stabilization. SIAM J. Control Optim. 32 (1994) 358–386. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.-M. Coron, On the stabilization of controllable and observable systems by an output feedback law. Math. Control Signals Systems 7 (1994) 187–216. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.-M. Coron, On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback law. SIAM J. Control Optim. 33 (1995) 804–833. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1996) 35–75. [CrossRef] [EDP Sciences] [Google Scholar]
  22. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [Google Scholar]
  23. J.-M. Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations. A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 513–554. [CrossRef] [EDP Sciences] [Google Scholar]
  24. J.-M. Coron, Control and nonlinearity, Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  25. J.-M. Coron, G. Bastin and B. d’Andréa Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47 (2008) 1460–1498. [CrossRef] [MathSciNet] [Google Scholar]
  26. J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. (JEMS) 6 (2004) 367–398. [CrossRef] [MathSciNet] [Google Scholar]
  27. J.-M. Coron and A.V. Fursikov, Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429–448. [MathSciNet] [Google Scholar]
  28. J.-M. Coron and J.-M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 339–344. [Google Scholar]
  29. J.-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right. J. Math. Pures Appl. 102 (2014) 1080–1120. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.-M. Coron and Q. Lü, Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation. J. Differ. Equ. 259 (2015) 3683–3729. [CrossRef] [Google Scholar]
  31. J.-M. Coron and H.-M. Nguyen, Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems. SIAM J. Math. Anal. 47 (2015) 2220–2240. [CrossRef] [MathSciNet] [Google Scholar]
  32. J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J. Control Optim. 43 (2004) 549–569. [CrossRef] [MathSciNet] [Google Scholar]
  33. A.V. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996). [Google Scholar]
  34. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. [CrossRef] [EDP Sciences] [Google Scholar]
  35. O. Glass, La méthode du retour en contrôlabilité et ses applications en mécanique des fluides [d’après Coron et al.]. Astérisque, (348), Exp. No. 1027, vii, 1–16 (2012). Séminaire Bourbaki. Vol. 2010/2011. Exposés 1027–1042. [Google Scholar]
  36. L.F. Ho, Observabilité frontière de l’équation des ondes. C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 443–446. [Google Scholar]
  37. O.Yu. Imanuvilov, Boundary controllability of parabolic equations. Uspekhi Mat. Nauk 48 (1993) 211–212. [Google Scholar]
  38. O.Yu. Imanuvilov, Controllability of parabolic equations. Mat. Sb. 186 (1995) 109–132. [Google Scholar]
  39. M. Krstic and A. Smyshlyaev, Boundary control of PDEs. A course on backstepping designs. Vol. 16 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008). [Google Scholar]
  40. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Comm. Partial Differ. Equ. 20 (1995) 335–356. [CrossRef] [MathSciNet] [Google Scholar]
  41. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch. Tome 1, Vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris (1988). [Google Scholar]
  42. J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. [CrossRef] [MathSciNet] [Google Scholar]
  43. M. Morancey, Simultaneous local exact controllability of 1D bilinear Schrödinger equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31 (2014) 501–529. [CrossRef] [Google Scholar]
  44. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. [CrossRef] [EDP Sciences] [Google Scholar]
  45. D.L. Russell, Nonharmonic Fourier series in the control theory of distributed parameter systems. J. Math. Anal. Appl. 18 (1967) 542–560. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.