Issue
ESAIM: COCV
Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 1078 - 1096
DOI https://doi.org/10.1051/cocv/2016033
Published online 28 July 2016
  1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, 9th edition. Dover (1965). [Google Scholar]
  2. K.Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer (2012). [Google Scholar]
  3. V. Barbu, Boundary Stabilization of Equilibrium Solutions to Parabolic Equations. IEEE Trans. Automat. Control 58 (2013) 2416–2420. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Brezis, Functional analysis, Sobolev spaces and Partial Differential Equations. Springer (2011). [Google Scholar]
  5. J.-M. Coron, R. Vazquez, M. Krstic and G. Bastin, Local Exponential H2 Stabilization of a 2 × 2 Quasilinear Hyperbolic System using Backstepping. SIAM J. Control Optim. 51 (2013) 2005–2035. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Bribiesca Argomedo, C. Prieur, E. Witrant and S. Bremond, A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients. IEEE Trans. Automat. Control 58 (2013) 290–303. [Google Scholar]
  7. F. Di Meglio, R. Vazquez and M. Krstic, Stabilization of a system of n+1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Automat. Control 58 (2013) 3097–3111. [Google Scholar]
  8. L.C. Evans, Partial Differential Equations. AMS, Providence, Rhode Island (1998). [Google Scholar]
  9. M. Krstic, Delay Compensation for nonlinear, Adaptive, and PDE Systems. Birkhauser (2009). [Google Scholar]
  10. M. Krstic and A. Smyshlyaev, Boundary Control of PDEs. SIAM (2008). [Google Scholar]
  11. M. Krstic and A. Smyshlyaev, Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Contr. Lett. 57 (2008) 750–758. [Google Scholar]
  12. T. Meurer, Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs. Springer (2013). [Google Scholar]
  13. T. Meurer and M. Krstic, Finite-time multi-agent deployment: A nonlinear PDE motion planning approach. Automatica 47 (2011) 2534–2542. [CrossRef] [MathSciNet] [Google Scholar]
  14. S.J. Moura, N.A. Chaturvedi and M. Krstic, PDE estimation techniques for advanced battery management systems – Part I: SOC estimation. Proc. of the 2012 American Control Conference (2012). [Google Scholar]
  15. J. Qi, R. Vazquez and M. Krstic, Multi-Agent Deployment in 3-D via PDE Control. IEEE Trans. Automat. Control 60 (2015) 891–906. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Smyshlyaev and M. Krstic, Adaptive Control of Parabolic PDEs. Princeton University Press (2010). [Google Scholar]
  17. A. Smyshlyaev, E. Cerpa and M. Krstic, Boundary stabilization of a 1-D wave equation with in-domain antidamping. SIAM J. Control Optim. 48 (2010) 4014–4031. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Triggiani, “Boundary feedback stabilization of parabolic equations. Appl. Math. Optim. 6 (1980) 201–220. [CrossRef] [MathSciNet] [Google Scholar]
  19. R. Vazquez and M. Krstic, Control of Turbulent and Magnetohydrodynamic Channel Flow. Birkhauser (2008). [Google Scholar]
  20. R. Vazquez and M. Krstic, Control of 1-D parabolic PDEs with Volterra nonlinearities – Part I: Design. Automatica 44 (2008) 2778–2790. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Vazquez and M. Krstic, Boundary observer for output-feedback stabilization of thermal convection loop. IEEE Trans. Control Syst. Technol. 18 (2010) 789–797. [CrossRef] [Google Scholar]
  22. R. Vazquez and M. Krstic, Explicit boundary control of a reaction-diffusion equation on a disk. Proc. of the 2014 IFAC World Congress (2014). [Google Scholar]
  23. R. Vazquez and M. Krstic, Explicit Boundary Control of Reaction-Diffusion PDEs on Arbitrary-Dimensional Balls. Proc. of the 2015 European Control Conference (2015). [Google Scholar]
  24. R. Vazquez, E. Trelat and J.-M. Coron, Control for fast and stable laminar-to-high-Reynolds-numbers transfer in a 2D navier−Stokes channel flow. Discretes Contin. Dyn. Syst. Ser. B 10 (2008) 925–956. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.