Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 1054 - 1077
Published online 05 August 2016
  1. A. Bonito and R. Glowinski, On the nodal set of the eigenfunctions of the Laplace−Beltrami operator for bounded surfaces in R3; A computational approach. Commun. Pure Appl. Anal. 13 (2014) 2115–2126. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bonito and J. Pasciak, Convergence analysis of variational and non–variational multigrid algorithms for the Laplace−Beltrami operator. Math. Comput. 81 (2012) 1263–1288. [CrossRef] [Google Scholar]
  3. C. Carthel, R. Glowinski and J.L. Lions, On exact and approximate boundary controllabilities for the heat equation: A numerical approach. J. Optim. Theory Appl. 82 (1994) 429–484. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.M. Coron and A. Fursikov, Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429–448. [MathSciNet] [Google Scholar]
  5. E. Fernández-Cara and A. Münch, Strong convergent approximations of null controls for the 1D heat equation. SEMA Journal 61 (2013) 49–78. [CrossRef] [Google Scholar]
  6. E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Carleman weights and duality. J. Optim. Theory Appl. 163 (2014) 253–285. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, 2nd printing (2008). Springer, New York (1984). [Google Scholar]
  8. R. Glowinski, Finite element methods for incompressible viscous flow. Vol. 9 of Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions. North-Holland, Amsterdam (2003) 3–1176. [Google Scholar]
  9. R. Glowinski and D.C. Sorensen, Computing the eigenvalues of the Laplace−Beltrami operator on the surface of a torus: A numerical approach. In Partial Differential Equations: Modelling and Numerical Simulation. Springer Netherlands (2008) 225–232. [Google Scholar]
  10. R. Glowinski, J.L. Lions and J.W. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Cambridge University Press, Cambridge, UK (2008). [Google Scholar]
  11. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20 (1995) 335–356. [Google Scholar]
  12. D.A. León, R. Glowinski and L. Héctor Juárez, On the controllability of diffusion processes on the surface of a torus: A computational approach. Pacific J. Optim. 11 (2015) 763–790. [Google Scholar]
  13. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, New York (1971). [Google Scholar]
  14. L. Miller, Geometric bounds on the grow rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204 (2004) 202–226. [CrossRef] [Google Scholar]
  15. L. Miller, Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds. Math. Res. Lett. 12 (2005) 37–47. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Münch and E. Zuazua, Numerical approximation of null controls for the heat equation: Ill-posedness and remedies. Inverse Problems 26 (2010) 085018. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Münch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach. Eur. J. Appl. Math. 25 (2014) 277–306. [CrossRef] [Google Scholar]
  18. Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data. Arch. Rational Mech. Anal. 216 (2015) 921–981. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Zuazua, Control and numerical approximation of the wave and heat equations. In Vol. 3 of Proc. Internat. Congress Math. Madrid, Spain (2006) 1389–1417. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.