Issue
ESAIM: COCV
Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 983 - 1016
DOI https://doi.org/10.1051/cocv/2016047
Published online 13 September 2016
  1. B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers. Springer (2013). [Google Scholar]
  2. B. d’Andréa-Novel, G. Bastin and G. Campion, Dynamic feedback linearization of non holonomic wheeled mobile robots. Proc. of the IEEE Conference on Robotics and Automation. Nice (1992) 2527–2532. [Google Scholar]
  3. B. d’Andréa-Novel, G. Campion and G. Bastin, Control of Non holonomic Wheeled Mobile Robots by State Feedback Linearization. Int. J. Robot. Res. 14 (1995) 543–559. [Google Scholar]
  4. E. Aranda-Bricaire, C.H. Moog and J.B. Pomet, A linear algebraic framework for dynamic feedback linearization. IEEE Transactions on Automatic Control 40 (1995) 127–132. [CrossRef] [Google Scholar]
  5. R.W. Brockett, Asymptotic stability and feedback stabilization, Differential geometric control theory (Houghton, Mich., 1982). Vol. 27 of Progr. Math. Birkhauser, Boston, Boston, MA (1983) 181–191. MR 708502 (85e:93034). [Google Scholar]
  6. G. Campion, B. d’Andréa-Novel and G. Bastin, Modelling and state feedback control of non holonomic mechanical systems. Proc. of the 30th IEEE CDC (1991) 1184–1189. [Google Scholar]
  7. C. Canudas de Wit, B. Siciliano and G. Bastin, The ZODIAC, Theory of Robot Control. Springer, 1st edition (1997). [Google Scholar]
  8. B. Charlet, Sur quelques problèmes de stabilisation robuste des systèmes non linéaires. Ph.D. thesis, École Nationale Supérieure des Mines de Paris (1989). [Google Scholar]
  9. B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization. Syst. Control Lett. 13 (1989) 143–151. [CrossRef] [Google Scholar]
  10. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signal Syst. 5 (1992) 295–312. [Google Scholar]
  11. J.-M. Coron, On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback law. SIAM J. Control Optim. 33 (1995) 804–833. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.-M. Coron, Phantom tracking method, homogeneity and rapid stabilization. Math. Control Related Fields 3 (2013) 303–322. [CrossRef] [Google Scholar]
  13. J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society (2007). [Google Scholar]
  14. J.-M. Coron and B. d’Andréa-Novel, Smooth stabilizing time-varying control laws for a class of nonlinear systems. Application to mobile robots. Proc. of the NOLCOS Conference. Bordeaux (1992) 649–654. [Google Scholar]
  15. J. Descusse and C.H. Moog, Decoupling with dynamic compensation for strong invertible affine nonlinear systems. Int. J. Control 42 (1985) 1387–1398. [CrossRef] [Google Scholar]
  16. R. Lozano, Objets volants miniatures. Hermes Science, Lavoisier (2007). [Google Scholar]
  17. I. Fantoni, R. Lozano, F. Mazenc and K.Y. Pettersen, Stabilization of a nonlinear under-actuated hovercraft. Proc. of the 38th IEEE CDC (1999). [Google Scholar]
  18. M. Fliess, J. Lévine, P. Martin and P. Rouchon, On differentially flat nonlinear systems. Proc. of the 2nd IFAC NOLCOS Symposium. Bordeaux (1992) 408–412. [Google Scholar]
  19. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control 61 (1995) 1327–1361. [Google Scholar]
  20. W. Hahn, Stability of motion. Springer, Berlin, Heidelberg, New-York (1967). [Google Scholar]
  21. A. Isidori, Nonlinear Control Systems. Springer-Verlag, 3rd Edition, London (1995). [Google Scholar]
  22. Y. Kanayama, Y. Kimura, F. Miyazaki and T. Noguchi, A stable tracking control method for an autonomous mobile robot. Proc. of the IEEE Int. Conf. Robot. Automat. (1990) 384–389. [Google Scholar]
  23. H.K. Khalil, Nonlinear systems. Prentice Hall, 2nd Edition (1995). [Google Scholar]
  24. G. Kern, Uniform controllability of a class of linear time-varying systems. IEEE Trans. Automat. Control 27 (1982) 208–210. [CrossRef] [Google Scholar]
  25. P. Kokotović and H. Sussmann, A positive real condition for global stabilization of nonlinear systems. Syst. Control Lett. 13 (1989) 125–133. [CrossRef] [Google Scholar]
  26. I. Kolmanovsky and N.H. McClamroch, Developments in non holonomic control problems. IEEE Control Syst. 15 (1995) 20-36. [CrossRef] [Google Scholar]
  27. E. Lefeber, K.Y. Pettersen and H. Nijmeijer, Tracking control of an under-actuated ship. IEEE Trans. Control System Technol. 11 (2003) 52–61. [CrossRef] [Google Scholar]
  28. D.A. Lizárraga. Obstructions to the Existence of Universal Stabilizers for Smooth Control Systems. Math. Control Signals Syst 16 (2004) 255–277. [CrossRef] [Google Scholar]
  29. A. Micaelli, B. d’Andréa-Novel and B. Thuilot, Modeling and asymptotic stabilization of mobile robots equipped with two or more steering wheels. Proc. of ICARCV’92. Singapour (1992). [Google Scholar]
  30. P. Morin and C. Samson, Control of nonlinear chained systems. From the Routh-Hurwitz stability criterion to time-varying exponential stabilizers. Rapport INRIA 3126 (1997). [Google Scholar]
  31. P. Morin and C. Samson, Control of nonlinear chained systems. From the Routh-Hurwitz stability criterion to time-varying exponential stabilizers. Proc. of the 36th IEEE CDC 1 (1997) 618–623. [Google Scholar]
  32. P. Morin and C. Samson, Control of under-actuated mechanical systems by the transverse function approach. In 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05 (2005) 7508–7513. [Google Scholar]
  33. P. Morin and C. Samson,Transverse functions on special orthogonal groups for vector fields satisfying the LARC at the order one. In Proc. of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC (2009) 7472–7477. [Google Scholar]
  34. R.M. Murray and S.S. Sastry, Steering non holonomic systems in chained form. In vol. 2, Proc. of the 30th IEEE CDC (1991) 1121–1126. [Google Scholar]
  35. R.M. Murray, Z. Li, S. Shankar Sastry and S. Shankara Sastry, A mathematical introduction to robotic manipulation. CRC press (1994). [Google Scholar]
  36. K.Y. Pettersen and O. Egeland, Exponential stabilization of an under-actuated surface vessel. Proc. of the 35th IEEE CDC (1996) 967–972. [Google Scholar]
  37. K.Y. Pettersen and O. Egeland, Robust control of an under-actuated surface vessel with thruster dynamics. Proc. of the ACC (1997). [Google Scholar]
  38. K.Y. Pettersen and H. Nijmeijer, Global practical stabilization and tracking for an under-actuated ship – a combined averaging and backstepping approach. Model. Identif. Control 20 (1999) 189–200. [CrossRef] [Google Scholar]
  39. J.-B. Pomet, B. Thuilot, G. Bastin and G. Campion, A hybrid strategy for the feedback stabilization of non holonomic mobile robots, Proc. of the IEEE Conf. on Robotics and Automation. Nice (1992) 129–134. [Google Scholar]
  40. L. Praly, B. d’Andréa-Novel and J.-M. Coron, Lyapunov design of stabilizing controllers for cascaded systems. In vol. 36, IEEE Trans. Automat. Control (1991) 10. [Google Scholar]
  41. M. Reyhanoglu. Control and stabilization of an under-actuated surface vessel. In vol. 3, Proc. of the 35th IEEE Conf. Decision Control (1996) 2371–2376. [Google Scholar]
  42. P. Rouchon, Necessary condition and genericity of dynamic feedback linearization. J. Math. Systems Estim. Control (1994) 345–358. [Google Scholar]
  43. C. Samson, Path following and time-varying feedback stabilization of a wheeled mobile robot. In vol. 13, Proc. of the International Conference on Advanced Robotics and Computer Vision. Singapour (1992) 1.1–1.5. [Google Scholar]
  44. C. Samson, Control of chained systems. Application to path following and time-varying feedback stabilization of mobile robots. IEEE Trans. Automat. Control 40 (1995) 64–77. [CrossRef] [MathSciNet] [Google Scholar]
  45. C. Samson, K. Ait-Abderrahim, Mobile robot control. Part 1: feedback control of non holonomic wheeled cart in cartesian space. Rapport de recherche RR-1288, INRIA (1990). [Google Scholar]
  46. R. Sepulchre, M. Janković, P. Kokotović, Constructive Nonlinear Control. Springer (1997). [Google Scholar]
  47. S. Thorel, Conception et réalisation d’un drone hybride sol/air autonome. Ph.D. thesis, MINES ParisTech (2014). [Google Scholar]
  48. S. Thorel and B. d’Andréa-Novel, Hybrid terrestrial and aerial quadrotor control. Proc. of the 19th IFAC World Congress. South Africa (2014). [Google Scholar]
  49. S. Thorel and B. d’Andréa-Novel, Practical identification and flatness based control of a terrestrial quadrotor. Proc. of the IROS conference. Chicago (2014). [Google Scholar]
  50. B. Thuilot, B. d’Andréa-Novel and A. Micaelli, Modeling and Feedback Control of Mobile Robots Equipped with Several Steering Wheels. IEEE Trans. Robot. Automat. 12 (1996) 375–390. [CrossRef] [Google Scholar]
  51. J. Tsinias, Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals Syst. 2 (1989) 343–357. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.