Issue
ESAIM: COCV
Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 1017 - 1039
DOI https://doi.org/10.1051/cocv/2016031
Published online 28 July 2016
  1. V.M. Alekseev, V.M. Tikhomorov and S.V. Formin, Optimal control. Consultants Bureau, New York (1987). [Google Scholar]
  2. F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems. J. Evol. Equ. 9 (2009) 267–291. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1 (2011) 267–306. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J. Math. Pures Appl. 96 (2011) 555–590. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time of controllability of two parabolic equations with disjoint control and coupling domains. C. R. Math. Acad. Sci. Paris 352 (2014), 391–396. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Benabdallah, F. Boyer, M. González-Burgos, Manuel and G. Olive, Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the N-dimensional boundary null controllability in cylindrical domains. SIAM J. Control Optim. 52 (2014) 2970–3001. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Bendahmane and F.W. Chaves-Silva, Null controllability of a degenerate reaction-diffusion system in cardiac electro-phisyology. C. R. Math. Acad. Sci. Paris 350 (11–12) (2012) 587–590. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Bendahmane and F. W. Chaves-Silva, Uniform null controllability for a degenerating reaction-diffusion system approximating a simplified cardiac model, to appear. [Google Scholar]
  9. F.W. Chaves-Silva, S. Guerrero and J.-P. Puel, Controllability of fast diffusion coupled parabolic systems. Math. Control Relat. Fields 4 (2014) 465–479. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components. Invent. Math. 198 (2014) 833–880. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41 (2002) 798–819. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17 (2000) 583–616. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [CrossRef] [Google Scholar]
  14. E. Fernández-Cara, S. Guerrero, O.Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier–Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Fernández-Cara, J. Limaco and S.B. de Menezes, Null controllability for a parabolic-elliptic coupled system. Bull Braz Math Soc, New Series 44 (2013) 1–24. [CrossRef] [Google Scholar]
  16. E. Fernández-Cara, J. Limaco and S.B. de Menezes, Theoretical and numerical local null controllability of a Ladyzhenskaya-Smagorinsky model of turbulence. J. Math. Fluid Mech. 17 (2015) 669–698. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lect. Notes Ser. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  18. B.Z. Guo and L. Zhang, Local exact controllability of a parabolic system of chemotaxis, Preprint, School of Computational and Applied Mathematics. University of the Witwatersrand, South Africa (2012). [Google Scholar]
  19. B.-Z. Guo and L. Zhang, Local exact controllability of a parabolic system of chemotaxis. Preprint arXiv:1303.4581 (2013). [Google Scholar]
  20. Y. Liu, T. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model. ESAIM: COCV 19 (2013) 20–42. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.