Issue
ESAIM: COCV
Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 1264 - 1281
DOI https://doi.org/10.1051/cocv/2016049
Published online 30 September 2016
  1. K. Beauchard, Local controllability of a 1D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851–956. [CrossRef] [MathSciNet] [Google Scholar]
  2. K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations. J. Math. Pures Appl. 94 (2010) 520–554. [CrossRef] [Google Scholar]
  3. K. Beauchard and C. Laurent, Local exact controllability of the 2D Schrödinger-Poisson system. Preprint hal-01333627 (2016). [Google Scholar]
  4. J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Cont. Optim. 20 (1982) 575–597. [Google Scholar]
  5. S. Ervedoza and E. Zuazua, A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1375–1401. [Google Scholar]
  6. S. Jaffard, Contrôle interne exact des vibrations d’une plaque rectangulaire. Port. Math. 47 (1990) 423–429. [Google Scholar]
  7. G. Lebeau, Contrôle de l’equation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267–291. [Google Scholar]
  8. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilization des systèmes distribués. Tome 1, Contrôlabilité exacte. Collection R.M.A 8, Masson (1988). [Google Scholar]
  9. E. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32 (1994) 24–34. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.-P. Puel, A regularity property for Schrödinger equations on bounded domains. Rev. Mat. Complut. 26 (2013) 183–192. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Tenenbaum, M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation. Trans. Amer. Math. Soc. 361 (2009) 951–977. [CrossRef] [MathSciNet] [Google Scholar]
  12. H. Weyl, Das asymptotisch Verteilungsgezetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71 (1912) 441–479. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.