Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 43
Number of page(s) 39
DOI https://doi.org/10.1051/cocv/2018027
Published online 20 September 2019
  1. L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces. Vol. 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004). [Google Scholar]
  2. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. [Google Scholar]
  3. L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105–123. [MathSciNet] [Google Scholar]
  4. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). [Google Scholar]
  5. M. Bernot, V. Caselles and J.-M. Morel, Optimal Transportation Networks: Models and Theory. Vol. 1955 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2009). [Google Scholar]
  6. M. Bonafini, G. Orlandi and E. Oudet, Variational Approximation of Functionals Defined on 1-Dimensional Connected Sets: The Planar Case. SIAM J. Math. Anal. 50 (2016) 6307–6332. [Google Scholar]
  7. M. Bonnivard, A. Lemenant and F. Santambrogio, Approximation of length minimization problems among compact connected sets. SIAM J. Math. Anal. 47 (2015) 1489–1529. [Google Scholar]
  8. A. Braides, Approximation of Free-Discontinuity Problems. Vol. 1694 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1998). [Google Scholar]
  9. A. Braides, Γ-Convergence for Beginners. Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). [Google Scholar]
  10. A. Chambolle, L. Ferrari and B. Merlet, A phase-field approximation of the Steiner problem in dimension two. Adv. Calc. Var. 12 (2017) 157–179. [Google Scholar]
  11. A. Chambolle, L. Ferrari and B. Merlet, Strong Approximation in h-Mass of Rectifiable Currents Under Homological Constraint. Adv. Calc. Var. (2017). [Google Scholar]
  12. M. Colombo, A. De Rosa, A. Marchese and S. Stuvard, On the lower semicontinuous envelope of functionals defined on polyhedral chains. Nonlinear Anal. 163 (2017) 201–215. [Google Scholar]
  13. S. Conti, M. Focardi and F. Iurlano, Phase field approximation of cohesive fracture models. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 1033–1067. [Google Scholar]
  14. G. Dal Maso An Introduction to Γ-Convergence. Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (1993). [Google Scholar]
  15. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Textbooks in Mathematics, revised edition. CRC Press, Boca Raton, FL (2015). [Google Scholar]
  16. H. Federer, Geometric measure theory. In Vol. 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York (1969). [Google Scholar]
  17. E.N. Gilbert and H.O. Pollak, Steiner minimal trees. SIAM J. Appl. Math. 16 (1968) 1–29. [Google Scholar]
  18. F. Iurlano, Fracture and plastic models as Γ-limits of damage models under different regimes. Adv. Calc. Var. 6 (2013) 165–189. [Google Scholar]
  19. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. [Google Scholar]
  20. E. Oudet and F. Santambrogio, A Modica-Mortola approximation for branched transport and applications. Arch. Ration. Mech. Anal. 201 (2011) 115–142. [Google Scholar]
  21. E. Paolini and E. Stepanov, Existence and regularity results for the Steiner problem. Calc. Var. Partial Differ. Equ. 46 (2013) 837–860. [Google Scholar]
  22. F. Santambrogio, Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2015). [Google Scholar]
  23. B. White, The deformation theorem for flat chains. Acta Math. 183 (1999) 255–271. [Google Scholar]
  24. B. White, Rectifiability of flat chains. Ann. Math. 150 (1999) 165–184. [Google Scholar]
  25. Q. Xia, Optimal paths related to transport problems. Commun. Contemp. Math. 5 (2003) 251–279. [Google Scholar]
  26. Q. Xia, Interior regularity of optimal transport paths. Calc. Var. Partial Differ. Equ. 20 (2004) 283–299. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.