Open Access
Volume 26, 2020
Article Number 108
Number of page(s) 30
Published online 10 December 2020
  1. G. Allaire, Shape optimization by the homogenization method, Vol. 146 of Applied Mathematical Sciences. Springer-Verlag, New York (2002). [CrossRef] [Google Scholar]
  2. D. Bucur and G. Buttazzo, Variational methods in shape optimization problems, Vol. 65 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Basel, Boston (2005). [CrossRef] [Google Scholar]
  3. D. Bucur and F. Gazzola, The first biharmonic Steklov eigenvalue: positivity preserving and shape optimization. Milan J. Math. 79 (2011) 247. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Bucur and J.-P. Zolésio, N-dimensional shape optimization under capacitary constraints. J. Differ. Equ. 132 (1995) 504–522. [Google Scholar]
  5. G. Buttazzo and G. Dal Maso An existence result for a class of shape optimization problems. Arch. Ration Mech. Anal. 122 (1993) 183–195. [Google Scholar]
  6. F. Caubet, M. Dambrine and D. Kateb, Shape optimization methods for the inverse obstacle problem with generalized impedance boundary conditions. Inverse Probl. 29 (2013) 115011. [Google Scholar]
  7. D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189–219. [Google Scholar]
  8. J. Dalphin, Some characterizations of a uniform ball property. ESAIM: PROCs 45 (2014) 437–446. [CrossRef] [EDP Sciences] [Google Scholar]
  9. J. Dalphin, Study of geometric functionals depending on curvature by shape optimization methods: applications to the functional of Willmore and Canham-Helfrich. Ph.D. thesis, Université de Lorraine, France, December. TEL-01097663, archivesouvertes (2014). [Google Scholar]
  10. J. Dalphin, Uniform ball property and existence of optimal shapes for a wide class of geometric functionals. Interfaces Free Bound. 20 (2018) 211–260. [CrossRef] [Google Scholar]
  11. M.C. Delfour and J.-P. Zolésio, Shapes and geometries: metrics, analysis, differential calculus, and optimization. SIAM series in Advances in Design and Control. Society for Industrial and Applied Mathematics, Philadelphia, 2nd edn. (2011). [Google Scholar]
  12. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC-Press, Boca Rotan, USA (1992). [Google Scholar]
  13. H. Federer, Curvature measures. Trans. Am. Math. Soc. 93 (1959) 418–491. [Google Scholar]
  14. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics. Springer-Verlag, Berlin (2001). [Google Scholar]
  15. P. Grisvard, Elliptic problems in nonsmooth domains. Pitman Advanced Publishing Program, Edinburgh (1985). [Google Scholar]
  16. A. Henrot and M. Pierre, Shape variation and optimization: a geometrical analysis, Vol. 28 of Tracts in Mathematics. European Mathematical Society, Zurich (2018). [Google Scholar]
  17. L. le Treust Méthodes variationelles et topologiques pour l’étude de modèles non-linéaires issus de la mécanique quantique relativiste. Ph.D. thesis, Université Paris Dauphine, France (2013). [Google Scholar]
  18. H.W.G. Lim, M. Wortis and R. Mukhopadhyay, Lipid bilayers and red blood cells, Vol. 4 of Soft Matter. Wiley-, Hoboken (2008). [Google Scholar]
  19. S. Montiel and A. Ros, Curves and surfaces, Vol. 69 of Graduate Studies in Mathematics. American Mathematical Society, USA (2005). [Google Scholar]
  20. O. Pironneau, Optimal shape design for elliptic systems, Springer Series in Computational Physics. Springer-Verlag, Berlin Heidelberg (1984). [Google Scholar]
  21. U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13–137. [Google Scholar]
  22. J. Sokolowski and J.-P. Zolésio, Introduction to shape optimization: shape sensitivity analysis, Vol. 16 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin Heidelberg (1992). [CrossRef] [Google Scholar]
  23. V. Sverak, On optimal shape design. J. Math. Pures Appl. 72 (1993) 537–551. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.