Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Article Number S8
Number of page(s) 43
DOI https://doi.org/10.1051/cocv/2020043
Published online 01 March 2021
  1. S. Adly, M. Ait Mansour and L. Scrimali, Sensitivity analysis of solutions to a class of quasi-variational inequalities. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8 (2005) 767–771. [Google Scholar]
  2. S. Adly, F. Nacry and L. Thibault, Discontinuous sweeping process with prox-regular sets. ESAIM: COCV 23 (2017) 1293–1329. [CrossRef] [EDP Sciences] [Google Scholar]
  3. R.B. Bapat, Graphs and matrices. Universitext. Springer, London (2010) 171. [Google Scholar]
  4. J. Bastien, F. Bernardin and C.-H. Lamarque, Non-smooth deterministic or stochastic discrete dynamical systems. Applications to models with friction or impact. Mechanical Engineering and Solid Mechanics Series. John Wiley & Sons, Inc., Hoboken, NJ (2013) 496. [Google Scholar]
  5. T.R. Bieler, N.T. Wright, F. Pourboghrat, C. Compton, K.T. Hartwig, D. Baars, A. Zamiri, S. Chandrasekaran, P. Darbandi, H. Jiang, E. Skoug, S. Balachandran, G.E. Ice and W. Liu, Physical and mechanical metallurgy of high purity Nb for accelerator cavities. Phys. Rev. Spec. Top. 13 (2010) 031002. [Google Scholar]
  6. I. Blechman, Paradox of fatigue of perfect soft metals in terms of micro plasticity and damage. Int. J. Fatigue 120 (2019) 353–375. [Google Scholar]
  7. D. Bremner, K. Fukuda and A. Marzetta, Primal-dual methods for vertex and facet enumeration. ACM Symposium on Computational Geometry (Nice, 1997). Discr. Comput. Geom. 20 (1998) 333–357. [Google Scholar]
  8. B. Brogliato, Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings. Syst. Control Lett. 51 (2004) 343–353. [Google Scholar]
  9. B. Brogliato, Nonsmooth mechanics. Models, dynamics and control. 3rd edn. Communications and Control Engineering Series. Springer, Berlin (2016). [Google Scholar]
  10. B. Brogliato and W.P.M.H. Heemels, Observer Design for Lur’e Systems With Multivalued Mappings: A Passivity Approach. IEEE Trans. Auto. Control 54 (2009) 1996–2001. [Google Scholar]
  11. B. Brogliato and L. Thibault, Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems. J. Convex Anal. 17 (2010) 961–990. [Google Scholar]
  12. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, Berlin (1996). [Google Scholar]
  13. G.A. Buxton, C.M. Care and D.J. Cleaver, A lattice spring model of heterogeneous materials with plasticity. Modell. Simul. Mater. Sci. Eng. 9 (2001) 485–497. [Google Scholar]
  14. R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao and M.Y. Ren, Microstructure representation and reconstruction of heterogeneous materials via deep belief network for computational material design. J. Mech. Des. 139 (2017) 071404. [CrossRef] [Google Scholar]
  15. H. Chen, E. Lin and Y. Liu, A novel Volume-Compensated Particle method for 2D elasticity and plasticity analysis. Int. J. Solids Struct. 51 (2014) 1819–1833. [Google Scholar]
  16. G. Colombo, R. Henrion, N.D. Hoang and B.S. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets. J. Differ. Equ. 260 (2016) 3397–3447. [Google Scholar]
  17. J.B. Conway, A Course in Functional Analysis. 2nd edn. Springer, Berlin (1997). [Google Scholar]
  18. V. Crismale, Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM: COCV 22 (2016) 883–912. [EDP Sciences] [Google Scholar]
  19. C.O. Frederick and P.J. Armstrong, Convergent internal stresses and steady cyclic states of stress. J. Strain Anal. 1 (1966) 154–159. [Google Scholar]
  20. S.H. Friedberg, A.J. Insel and L.E. Spence, Linear Algebra, 4th edn. Prentice-Hall of India, New Delhi (2004). [CrossRef] [Google Scholar]
  21. G. Garcea and L. Leonetti, A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis. Internat. J. Numer. Methods Eng. 88 (2011) 1085–1111. [Google Scholar]
  22. W. Grzesikiewicz, A. Wakulicz and A. Zbiciak, Mathematical modelling of rate-independent pseudoelastic SMA material. Int. J. Non-Linear Mech. 46 (2011) 870–876. [Google Scholar]
  23. W. Han and B.D. Reddy, Plasticity. Mathematical theory and numerical analysis. 2nd edn. Interdisciplinary Applied Mathematics, 9. Springer, New York (2013). [Google Scholar]
  24. M. Heitzer, G. Pop and M. Staat, Basis reduction for the shakedown problem for bounded kinematic hardening material. J. Global Optim. 17 (2000) 185–200. [Google Scholar]
  25. H.R. Henriquez, M. Pierri and P. Taboas, On S-asymptotically ω-periodic functions on Banach spaces and applications. J. Math. Anal. Appl. 343 (2008) 1119–1130. [Google Scholar]
  26. J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Grundlehren Text Editions. Springer-Verlag, Berlin (2001) x+259. [Google Scholar]
  27. D.W. Holmes, J.G. Loughran and H. Suehrcke, Constitutive model for large strain deformation of semicrystalline polymers. Mech. Time-Depend Mater. 10 (2006) 281–313. [Google Scholar]
  28. H. Hubel, Simplified Theory of Plastic Zones. Springer, Berlin (2015). [Google Scholar]
  29. A. Isidori, Nonlinear control systems. An introduction. 2nd edn. Communications and Control Engineering Series. Springer-Verlag, Berlin (1989) xii+479. [Google Scholar]
  30. L. Jakabcin, A visco-elasto-plastic evolution model with regularized fracture. ESAIM: COCV 22 (2016) 148–168. [CrossRef] [EDP Sciences] [Google Scholar]
  31. M. Jirasek and Z.P. Bazant, Inelastic Analysis of Structures. Jhon Wiley & Sons, London (2002). [Google Scholar]
  32. P. Jordan, A.E. Kerdok, R.D. Howe and S. Socrate, Identifying a Minimal Rheological Configuration: A Tool for Effective and Efficient Constitutive Modeling of Soft Tissues. J. Biomech. Eng. 133 (2011) 041006. [PubMed] [Google Scholar]
  33. M. Kamenskii, O. Makarenkov, L. Niwanthi Wadippuli and P. Raynaud de Fitte, Global stability of almost periodic solutions to monotone sweeping processes and their response to non-monotone perturbations. Nonlinear Anal. Hybrid Syst. 30 (2018) 213–224. [Google Scholar]
  34. M.A. Krasnosel’skii, The operator of translation along the trajectories of differential equations. Translations of Mathematical Monographs, Vol. 19. Translated from the Russian by Scripta Technica. American Mathematical Society, Providence, R.I. (1968). [Google Scholar]
  35. M. Krasnosel’skii and A. Pokrovskii, Systems with Hysteresis. Springer, Berlin (1989). [CrossRef] [Google Scholar]
  36. P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gattotoscho, Tokyo (1996). [Google Scholar]
  37. P. Krejci and A. Vladimirov, Polyhedral sweeping processes with oblique reflection in the space of regulated functions. Set-Valued Anal. 11 (2003) 91–110. [Google Scholar]
  38. M. Kunze and M.D.P. Monteiro Marques, An introduction to Moreau’s sweeping process. Impacts in mechanical systems (Grenoble, 1999), Vol. 551 of Lecture Notes in Physics. Springer, Berlin (2000) 1–60. [Google Scholar]
  39. R.I. Leine and N. van de Wouw, Stability and convergence of mechanical systems with unilateral constraints, Lecture Notes in Applied and Computational Mechanics, 36. Springer-Verlag, Berlin (2008). [Google Scholar]
  40. R.I. Leine and N. van de Wouw, Uniform convergence of monotone measure differential inclusions: with application to the control of mechanical systems with unilateral constraints. Internat. J. Bifur. Chaos Appl. Sci. Eng. 18 (2008) 1435–1457. [Google Scholar]
  41. H.X. Li, Kinematic shakedown analysis under a general yield condition with non-associated plastic flow. Int. J. Mech. Sci. 52 (2010) 1–12. [Google Scholar]
  42. C.W. Li, X. Tang, J.A. Munoz, J.B. Keith, S.J. Tracy, D.L. Abernathy and B. Fultz, Structural Relationship between Negative Thermal Expansion and Quartic Anharmonicity of Cubic ScF3 . Phys. Rev. Lett. 107 (2011) 195504. [CrossRef] [PubMed] [Google Scholar]
  43. J.A.C. Martins, M.D.P Monteiro Marques and A. Petrov, On the stability of quasi-static paths for finite dimensional elastic-plastic systems with hardening. ZAMM Z. Angew. Math. Mech. 87 (2007) 303–313. [Google Scholar]
  44. J.L. Massera, The existence of periodic solutions of systems of differential equations. Duke Math. J. 17 (1950) 457–475. [Google Scholar]
  45. J.-J. Moreau, On unilateral constraints, friction and plasticity. New variational techniques in mathematical physics (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Bressanone, 1973). Edizioni Cremonese, Rome (1974) 171–32. [Google Scholar]
  46. L. Narici and E. Beckenstein, Topological vector spaces. 2nd edn. Vol. 296 of Pure and Applied Mathematics. CRC Press, Boca Raton, FL (2011). [Google Scholar]
  47. C. Polizzotto, Variational methods for the steady state response of elastic–plastic solids subjected to cyclic loads. Int. J. Solids Struct. 40 (2003) 2673–2697. [Google Scholar]
  48. A.R.S. Ponter and H. Chen, A minimum theorem for cyclic load in excess of shakedown, with application to the evaluation of a ratchet limit. Eur. J. Mech. A/Solids 20 (2001) 539–553. [Google Scholar]
  49. V. Recupero, BV continuous sweeping processes. J. Differ. Equ. 259 (2015) 4253–4272. [Google Scholar]
  50. R.T. Rockafellar, Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970). [Google Scholar]
  51. J. Schwiedrzik, R. Raghavan, A. Burki, V. LeNader, U. Wolfram, J. Michler and P. Zysset, In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat. Mater. 13 (2014) 740–747. [PubMed] [Google Scholar]
  52. E. Svanidze, T. Besara, M.F. Ozaydin, C.S. Tiwary, J.K. Wang, S. Radhakrishnan, S. Mani, Y. Xin, K. Han, H. Liang, T. Siegrist, P. M. Ajayan and E. Morosan, High hardness in the biocompatible intermetallic compound βTi3 Au. Sci. Adv.2 (2016) e1600319. [PubMed] [Google Scholar]
  53. A. Visintin, Differential Models of Hysteresis. Springer, Berlin (1994). [Google Scholar]
  54. D. Weichert and G. Maier, Inelastic behavior of structures under variable repeated loads. Springer, New York (2002). [Google Scholar]
  55. J. Zhang, B. Koo, Y. Liu, J. Zou, A. Chattopadhyay and L. Dai, A novel statistical spring-bead based network model for self-sensing smart polymer materials. Smart Mater. Struct. 24 (2015) 085022. [Google Scholar]
  56. N. Zouain and R. SantAnna, Computational formulation for the asymptotic response of elastoplastic solids under cyclic loads. Eur. J. Mech. A/Solids 61 (2017) 267–278. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.