Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Article Number S9
Number of page(s) 27
DOI https://doi.org/10.1051/cocv/2020057
Published online 01 March 2021
  1. S. Cong, Control of Quantum Systems: Theory and Methods. John Wiley & Sons (2014). [Google Scholar]
  2. J.-M. Coron, Control and Nonlinearity. American Mathematical Society (2007). [Google Scholar]
  3. D. D’Alessandro, Introduction to Quantum Control and Dynamics. Chapman & Hall/CRC, Boca Raton (2008). [Google Scholar]
  4. P. de Fouquieres, S.G. Schirmer, S.J. Glaser and I. Kuprov, Second order gradient ascent pulse engineering. J. Magn. Reason. 212 (2011) 412–417. [Google Scholar]
  5. F. Diele, L. Lopez and R. Peluso, The Cayley transform in the numerical solution of unitary differential systems. Adv. Comput. Math. 8 (1998) 317–334. [Google Scholar]
  6. D. Dong and I.R. Petersen, Quantum control theory and applications: a survey. IET Control Theory Appl. 4 (2010) 2651–2671. [Google Scholar]
  7. Symeon Grivopoulos and Bassam Bamieh. Lyapunov-based control of quantum systems, in 42nd IEEE CDC, Vol. 1 (2003) 434–438. [Google Scholar]
  8. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen and S.J. Glaser, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reason. 172 (2005) 296–305. [Google Scholar]
  9. N. Leung, M. Abdelhafez, J. Koch and D. Schuster, Speedup for quantum optimal control from automatic differentiation based on graphics processing units. Phys. Rev. A 95 (2017) 042318. [Google Scholar]
  10. S. Machnes, E. Assémat, D. Tannor and F.K. Wilhelm, Tunable, flexible, and efficient optimization of control pulses for practical qubits. Phys. Rev. Lett. 120 (2018) 150401. [PubMed] [Google Scholar]
  11. M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential. Ann. Inst. Henri Poincaré (C) Non-Linear Anal. 26 (2009) 1743–1765. [Google Scholar]
  12. M. Mirrahimi, P. Rouchon and G. Turinici, Lyapunov control of bilinear Schrödinger equations. Automatica 41 (2005) 1987–1994. [Google Scholar]
  13. J.P. Palao and R. Kosloff, Quantum computing by an optimal control algorithm for unitary transformations. Phys. Rev. Lett. 89 (2002) 188301. [CrossRef] [PubMed] [Google Scholar]
  14. J.P. Palao and R. Kosloff. Optimal control theory for unitary transformations. Phys. Rev. A 68 (2003) 062308. [Google Scholar]
  15. Y. Pan, V. Ugrinovskii and M.R. James, Lyapunov analysis for coherent control of quantum systems by dissipation, in 2015 American Control Conference (ACC) (2015) 98–103. [Google Scholar]
  16. P.S. Pereira da Silva and P. Rouchon, RIGA and FPA, quantum control with smooth control pulses [source code] (2019). [Google Scholar]
  17. P.S. Pereira da Silva, P. Rouchon and H.B. Silveira, Geração rápida e virtualmente exata de portas quânticas via métodos iterativos do tipo Lyapunov, in Proc. CBA’2018 - Congresso Brasileiro de Automática: CBA’2018, Brazilian Control Conference. João Pessoa, Brazil (2018). [Google Scholar]
  18. P.S. Pereira da Silva, H.B Silveira and P. Rouchon, RIGA, a fast algorithm for quantum gate generation [source code] (2019). [Google Scholar]
  19. P.S. Pereira da Silva, H.B. Silveira and P. Rouchon, Fast and virtually exact quantum gate generation in U(n) via iterative Lyapunov methods. To appear in: Int. J. Control (2019). https://doi.org/10.1080/00207179.2019.1626023. [Google Scholar]
  20. N. Rach, M.M. Müller, T. Calarco and S. Montangero, Dressing the chopped-random-basis optimization: a bandwidth-limited access to the trap-free landscape. Phys. Rev. A 92 (2015) 062343. [Google Scholar]
  21. B. Riaz, C. Shuang and S. Qamar, Optimal control methods for quantum gate preparation: a comparative study. Quantum Inf Process 18 (2019) 100. [Google Scholar]
  22. D.J. Saunders, The Geometry of Jet Bundles. Vol. 142 of London Mathematical Society Lecture Note Series. Cambridge University Press, London (1989). [Google Scholar]
  23. S.G. Schirmer and P. de Fouquieres. Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered. New J. Phys. 13 (2011) 073029. [Google Scholar]
  24. H.B. Silveira, P.S. Pereira da Silva and P. Rouchon, Quantum gate generation by T-sampling stabilization. Int. J. Control 87 (2014) 1227–1242. [Google Scholar]
  25. H.B. Silveira, P.S. Pereira da Silva and P. Rouchon, Quantum gate generation for systems with drift in U(n) using Lyapunov-Lasalle techniques. Int. J. Control 89 (2016) 1–16. [Google Scholar]
  26. N. Yamamoto, K. Tsumura and S. Hara, Feedback control of quantum entanglement in a two-spin system. Automatica 43 (2007) 981–992. [Google Scholar]
  27. J. Zhang, Y.-x. Liu, R.-B. Wu, K. Jacobs and F. Nori, Quantum feedback: theory, experiments, and applications. Phys. Rep. 679 (2017) 1–60. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.