Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Article Number S14
Number of page(s) 23
DOI https://doi.org/10.1051/cocv/2020063
Published online 01 March 2021
  1. P. Beremlijski, J. Haslinger, M. Kočvara and J. Outrata, Shape optimization in contact problems with Coulomb friction. SIAM J. Optim. 13 (2002) 561–587. [Google Scholar]
  2. P. Beremlijski, J. Haslinger, J. Outrata and R. Pathó, Shape optimization in contact problems with Coulomb friction and a solution-dependent friction coefficient. SIAM J. Control Optim. 52 (2014) 3371–3400. [Google Scholar]
  3. B. Chaudet-Dumas and J. Deteix, Shape derivatives for the penalty formulation of elastic contact problems with Tresca friction. SIAM J. Control Optim. 58 (2020) 3237–3261. [Google Scholar]
  4. P.G. Ciarlet (Ed.), Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity. Studies in Mathematics and Its Applications. Academic Press, Elsevier (1988) 20. [Google Scholar]
  5. M.C. Delfour and J.-P. Zolésio, A boundary differential equation for thin shells. J. Differ. Eq. 119 (1995) 426–449. [Google Scholar]
  6. M.C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimisation. Society for Industrial and Applied Mathematics, Philadelphia, PA (2001). [Google Scholar]
  7. J. Deny, Théorie de la capacité dans les espaces fonctionnels. Sémin. Brelot-Choquet-Deny. Théor. potentiel 9 (1965) 1–13. [Google Scholar]
  8. C. Eck, J. Jarusek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems. CRC Press (2005). [Google Scholar]
  9. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Vol. 28. Siam (1999). [Google Scholar]
  10. M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications. Elsevier Science (2000). [Google Scholar]
  11. J. Haslinger and A. Klarbring, Shape optimization in unilateral contact problems using generalized reciprocal energy as objective functional. Nonlinear Anal.: Theory Methods Appl. 21 (1993) 815–834. [Google Scholar]
  12. J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design: Theory and Applications. John Wiley & Sons (1988). [Google Scholar]
  13. J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape, Material, and Topology Design. John Wiley & Sons (1996). [Google Scholar]
  14. J. Haslinger, J. Outrata and R. Pathó, Shape optimization in 2D contact problems with given friction and a solution-dependent coefficient of friction. Set-Valued Var. Anal. 20 (2012) 31–59. [Google Scholar]
  15. C. Heinemann and K. Sturm, Shape optimization for a class of semilinear variational inequalities with applications to damage models. SIAM J. Math. Anal. 48 (2016) 3579–3617. [Google Scholar]
  16. A. Henrot and M. Pierre, Shape Variation and Optimization: A Geometrical Analysis. European Mathematical Society Publishing House (2018). [Google Scholar]
  17. M. Hintermüller and A. Laurain, Optimal shape design subject to elliptic variational inequalities. SIAM J. Control Optim. 49 (2011) 1015–1047. [Google Scholar]
  18. K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM (2008). [Google Scholar]
  19. J. Jarušek, M. Krbec, M. Rao and J. Sokołowski, Conical differentiability for evolution variational inequalities. J. Differ. Eq. 193 (2003) 131–146. [Google Scholar]
  20. N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Vol. 8. SIAM (1988). [Google Scholar]
  21. A. Klarbring and J. Haslinger, On almost constant contact stress distributions by shape optimization. Struct. Optim. 5 (1993) 213–216. [Google Scholar]
  22. M. Kočvara and J. Outrata, On optimization of systems governed by implicit complementarity problems. Numer. Funct. Anal. Optim. 15 (1994) 869–887. [Google Scholar]
  23. A. Maury, Shape Optimization for Contact and Plasticity Problems Thanks to the Level Set Method. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI (2016). [Google Scholar]
  24. F. Mignot, Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22 (1976) 130–185. [Google Scholar]
  25. F. Mignot and J.-P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22 (1984) 466–476. [Google Scholar]
  26. F. Murat and J. Simon, Étude de problèmes d’optimal design, in IFIP Technical Conference on Optimization Techniques. Springer (1975), 54–62. [Google Scholar]
  27. P. Neittaanmäki, J. Sokolowski and J.-P. Zolésio. Optimization of the domain in elliptic variational inequalities. Appl. Math. Optim. 18 (1988) 85–98. [Google Scholar]
  28. J. Sokolowski and J.-P. Zolésio, Shape sensitivity analysis for variational inequalities, in System Modeling and Optimization. Springer (1982), 401–407. [Google Scholar]
  29. J. Sokolowski and J.-P. Zolésio, Dérivée par rapport au domaine de la solution d’un problème unilatéral. C. R. Acad. Sc. Paris 301 (1985) 103–106. [Google Scholar]
  30. J. Sokolowski and J.-P. Zolésio, Sensitivity analysis of elastic-plastic torsion problem, in System Modelling and Optimization. Springer (1986) 845–853. [Google Scholar]
  31. J. Sokolowski and J.-P. Zolésio, Shape design sensitivity analysis of plates and plane elastic solids under unilateral constraints. J. Optim. Theory Appl. 54 (1987) 361–382. [Google Scholar]
  32. J. Sokolowski and J.-P. Zolésio, Shape sensitivity analysis of unilateral problems. SIAM J. Math. Anal. 18 (1987) 1416–1437. [Google Scholar]
  33. J. Sokołowski and J.-P. Zolésio, Shape sensitivity analysis of contact problem with prescribed friction. Nonlinear Anal.: Theory Methods Appl. 12 (1988) 1399–1411. [Google Scholar]
  34. J. Sokolowski and J.-P. Zolésio, Introduction to shape optimization, in Introduction to Shape Optimization. Springer (1992). [Google Scholar]
  35. J. Sokolowski and J.-P. Zolésio, Differential stability of solutions to unilateral problems. Free Bound. Probl.: Appl. Theory 4 (1993) 537–547. [Google Scholar]
  36. G. Stadler, Infinite-dimensional semi-smooth Newton and augmented Lagrangian methods for friction and contact problems in elasticity. Selbstverl. (2004). [Google Scholar]
  37. L.M. Susu. Optimal control of a viscous two-field gradient damage model. GAMM-Mitteilungen 40 (2018) 287–311. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.