Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Article Number S25
Number of page(s) 43
DOI https://doi.org/10.1051/cocv/2020078
Published online 01 March 2021
  1. L. Abatangelo, V. Felli, L. Hillairet and C. Léna, Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators. J. Spectr. Theory 9 (2019) 379–427. [CrossRef] [Google Scholar]
  2. L. Abatangelo, V. Felli and C. Léna, Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications. ESAIM: COCV 26 (2020) 39. [EDP Sciences] [Google Scholar]
  3. H. Ammari and H. Kang, Polarization and moment tensors, volume 162 of Applied Mathematical Sciences. Springer, New York (2007). [Google Scholar]
  4. H. Ammari, H. Kang and H. Lee, Layer potential techniques in spectral analysis, In Vol. 153 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2009). [CrossRef] [Google Scholar]
  5. I. Babuška, A.M. Soane and M. Suri, The computational modeling of problems on domains with small holes. Comput. Methods Appl. Mech. Engrg. 322 (2017) 563–589. [Google Scholar]
  6. G. Besson, Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou. (French) [Asymptotic behavior of the eigenvalues of the Laplacian in a domain with a hole]. Bull. Soc. Math. France 113 (1985) 211–230. [Google Scholar]
  7. R. Böhme and F. Tomi, Zur Struktur der Lösungsmenge des Plateauproblems. Math. Z. 133 (1973) 1–29. [Google Scholar]
  8. A. Bonnafé, Estimates and asymptotic expansions for condenser p-capacities. The anisotropic case of segments. Quaest. Math. 39 (2016) 911–944. [Google Scholar]
  9. V. Bonnaillie-Noël and M. Dambrine, Interactions between moderately close circular inclusions: the Dirichlet-Laplace equation in the plane. Asymptot. Anal. 84 (2013) 197–227. [Google Scholar]
  10. V. Bonnaillie-Noël, M. Dambrine and C. Lacave, Interactions between moderately close inclusions for the two-dimensional Dirichlet-Laplacian. Appl. Math. Res. Express. AMRX (2016) 1–23. [Google Scholar]
  11. I. Chavel, Eigenvalues in Riemannian geometry, in Vol. 115 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL (1984). [Google Scholar]
  12. I. Chaveland E.A. Feldman, Spectra of manifolds less a small domain. Duke Math. J. 56 (1988) 399–414. [Google Scholar]
  13. L. Chesnel and X. Claeys, A numerical approach for the Poisson equation in a planar domain with a small inclusion. BIT 56 (2016) 1237–1256. [Google Scholar]
  14. B. Colbois and G. Courtois, Convergence de variétés and convergence du spectre du Laplacien. (French) [Convergence of manifolds and convergence of the spectrum of the Laplacian]. Ann. Sci. École Norm. Sup. 24 (1991) 507–518. [Google Scholar]
  15. M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988) 613–626. [Google Scholar]
  16. G. Courtois, Spectrum of manifolds with holes. J. Funct. Anal. 134 (1995) 194–221. [Google Scholar]
  17. M. DallaRiva Stokes flow in a singularly perturbed exterior domain. Complex Var. Elliptic Equ. 58 (2013) 231–257. [Google Scholar]
  18. M. Dalla Riva and M. Lanza de Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach. Complex Var. Elliptic Equ. 55 (2010) 771–794. [Google Scholar]
  19. M. DallaRiva and P. Musolino, Real analytic families of harmonic functions in a planar domain with a small hole. J. Math. Anal. Appl. 422 (2015) 37–55. [Google Scholar]
  20. M. Dalla Riva, P. Musolino and S.V. Rogosin, Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole. Asymptot. Anal. 92 (2015) 339–361. [Google Scholar]
  21. K. Deimling, Nonlinear functional analysis. Springer-Verlag, Berlin (1985). [Google Scholar]
  22. G.B. Folland, Introduction to partial differential equations. Princeton University Press, Princeton NJ (1995). [Google Scholar]
  23. A. Friedman, Partial differential equations. Holt, Rinehart and Winston, Inc., New York- Montreal, Que.-London (1969). [Google Scholar]
  24. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics. Springer-Verlag, Berlin (2001). [Google Scholar]
  25. A. Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). [CrossRef] [Google Scholar]
  26. D. Henry, Topics in nonlinear analysis, Trabalho de Matemática. 192, Brasilia (1982). [Google Scholar]
  27. A.M. Il’in, Matching of asymptotic expansions of solutions of boundary value problems, in Vol. 102 of Translations of Mathematical Monographs. American Mathematical Society, Providence (1992). [Google Scholar]
  28. R. Kress, Linear integral equations, Third edition. In Vol. 82 of Applied Mathematical Sciences. Springer-Verlag, New York (2014). [CrossRef] [Google Scholar]
  29. P.D. Lamberti and M. Perin, On the sharpness of a certain spectral stability estimate for the Dirichlet Laplacian. Eurasian Math. J. 1 (2010) 111–122. [Google Scholar]
  30. M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces. Comput. Methods Funct. Theory 2 (2002) 1–27. [Google Scholar]
  31. M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole, and relative capacity, in Complex analysis and dynamical systems, vol. 364 of Contemp. Math.. Amer. Math. Soc., Providence, RI (2004) 155–167. [Google Scholar]
  32. M. Lanza de Cristoforis, Asymptotic behaviour of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach. Analysis (Munich) 28 (2008) 63–93. [Google Scholar]
  33. M. Lanza de Cristoforis, Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach. Rev. Mat. Complut. 25 (2012) 369–412. [Google Scholar]
  34. M. Lanza de Cristoforis and S.V. Rogosin, Analyticity of a nonlinear operator associated to the conformal representation of a doubly connected domain in Schauder spaces. Complex Variables Theory Appl. 44 (2001) 193–223. [Google Scholar]
  35. D. Martin, Mélina, bibliothèque de calculs éléments finis. available from: https://anum-maths.univ-rennes1.fr/melina/danielmartin/melina/ (2007). [Google Scholar]
  36. V.G. Maz’ya, A.B. Movchan and M.J. Nieves, Green’s kernels and meso-scale approximations in perforated domains, in Vol. 2077 of Lecture Notes in Mathematics. Springer, Berlin (2013). [CrossRef] [Google Scholar]
  37. V.G. Maz’ya, A.B. Movchan, and M.J. Nieves, Eigenvalue problem in a solid with many inclusions: asymptotic analysis. Multiscale Model. Simul. 15 (2017) 1003–1047. [Google Scholar]
  38. V.G. Maz’ya, S.A. Nazarov, B.A. Plamenevskiĭ, Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984) 347–371. English translation: Math. USSR-Izv. 24 (1985) 321–346. [Google Scholar]
  39. V.G. Maz’ya, S.A. Nazarov, B.A. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. I, volume 111 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel (2000). [Google Scholar]
  40. V.G. Maz’ya, S.A. Nazarov and B.A. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. II, volume 112 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel (2000). [Google Scholar]
  41. P. Musolino and V. Mityushev, Asymptotic behavior of the longitudinal permeability of a periodic array of thin cylinders. Electron. J. Differential Equations (2015). [Google Scholar]
  42. A.A. Novotny and J. Sokołowski Topological derivatives in shape optimization, Interaction of Mechanics and Mathematics. Springer, Heidelberg (2013). [Google Scholar]
  43. S. Ozawa, Singular Hadamard’s variation of domains and eigenvalues of the Laplacian. Proc. Japan Acad. Ser. A Math. Sci. 56 (1980) 306–310. [Google Scholar]
  44. S. Ozawa, Singular Hadamard’s variation of domains and eigenvalues of the Laplacian. II. Proc. Japan Acad. Ser. A Math. Sci. 57 (1981) 242–246. [Google Scholar]
  45. S. Ozawa, Singular variation of domains and eigenvalues of the Laplacian. Duke Math. J. 48 (1981) 767–778. [Google Scholar]
  46. S. Ozawa, An asymptotic formula for the eigenvalues of the Laplacian in a domain with a small hole. Proc. Japan Acad. Ser. A Math. Sci. 58 (1982) 5–8. [Google Scholar]
  47. S. Ozawa, Potential theory and eigenvalues of the Laplacian. Proc. Japan Acad. Ser. A Math. Sci. 58 (1982) 134–136. [Google Scholar]
  48. J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains. J. Funct. Anal. 18 (1975) 27–59. [Google Scholar]
  49. A. Samarskiĭ, On the influence of constraints on the characteristic frequencies of closed volumes. (Russian) Doklady Akad. Nauk SSSR (N.S.) 63 (1948) 631–634. [Google Scholar]
  50. J. Schauder, Potentialtheoretische Untersuchungen. Math. Z. 33 (1931) 602–640. [Google Scholar]
  51. J. Schauder, Bemerkung zu meiner Arbeit “Potentialtheoretische Untersuchungen I (Anhang)”. Math. Z. 35 (1932) 536–538. [Google Scholar]
  52. D.D. Sokolov (originator). Elliptic coordinates. Encyclopedia of Mathematics, http://www.encyclopediaofmath.org/index.php/Elliptic_coordinates, 2011. Accessed: 2015-07-27. [Google Scholar]
  53. T. Valent, Boundary value problems of finite elasticity. Local theorems on existence, uniqueness and analytic dependence on data. Springer-Verlag, New York (1988). [Google Scholar]
  54. W. Wendland, Die Fredholmsche Alternative für Operatoren, die bezüglich eines bilinearen Funktionals adjungiert sind. Math. Z. 101 (1967) 61–64. [Google Scholar]
  55. W. Wendland, Bemerkungen über die Fredholmschen Sätze. Methoden Verfahren Math. Phys. 3, B.I.-Hochschulskripten 722/722a (1970) 141–176. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.