Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Article Number S26
Number of page(s) 27
DOI https://doi.org/10.1051/cocv/2020088
Published online 01 March 2021
  1. H. Cartan, Calcul différentiel. Formes différentielles. Hermann, Paris (1967). [Google Scholar]
  2. E. Casas, R. Herzog and G. Wachsmuth, Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations. ESAIM: COCV 23 (2017) 263–295. [CrossRef] [EDP Sciences] [Google Scholar]
  3. E. Casas, C. Ryll and F. Tröltzsch, Sparse optimal control of the Schlögl and FitzHugh–Nagumo systems. Comput. Methods Appl. Math. 13 (2013) 415–442. [Google Scholar]
  4. E. Casas, C. Ryll and F. Tröltzsch, Second order and stability analysis for optimal sparse control of the FitzHugh–Nagumo equation. SIAM J. Control Optim. 53 (2015) 2168–2202. [Google Scholar]
  5. P. Colli, G. Gilardi and D. Hilhorst, On a Cahn–Hilliard type phase field system related to tumor growth. Discret. Cont. Dyn. Syst. 35 (2015) 2423–2442. [Google Scholar]
  6. P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26 (2015) 93–108. [Google Scholar]
  7. P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modelling tumor growth. Discret. Contin. Dyn. Syst. Ser. S 10 (2017) 37–54. [Google Scholar]
  8. P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30 (2017) 2518–2546. [Google Scholar]
  9. P. Colli, G. Gilardi and J. Sprekels, A distributed control problem for a fractional tumor growth model. Mathematics 7 (2019) 792. [Google Scholar]
  10. P. Colli, A. Signori and J. Sprekels, Optimal control of a phase field system modelling tumor growth with chemotaxis and singular potentials. To appear in: Appl. Math. Optim. (2019), available from: https://doi.org/10.1007/s00245-019-09618-6. [Google Scholar]
  11. J. Dieudonné, Foundations of Modern Analysis, Pure and Applied Mathematics, vol. 10. Academic Press, New York (1960). [Google Scholar]
  12. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Gauthier-Villars, Paris-Brussels-Montreal, Que. (1974). [Google Scholar]
  13. H. Garcke, K.F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Model. Methods Appl. Sci. 26 (2016) 1095–1148. [Google Scholar]
  14. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, 2nd edn. Springer-Verlag, Berlin-Heidelberg (1983). [Google Scholar]
  15. A. Hawkins-Daarud, K.G. van der Zee and J.T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Math. Biomed. Eng. 28 (2011) 3–24. [Google Scholar]
  16. R. Herzog, J. Obermeier and G. Wachsmuth, Annular and sectorial sparsity in optimal control of elliptic equations. Comput. Optim. Appl. 62 (2015) 157–180. [Google Scholar]
  17. R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. [Google Scholar]
  18. A.D. Ioffe and V.M. Tikhomirov, Theory of Extremal Problems, Studies in Mathematics and its Applications, vol. 6. North-Holland Publishing Co., Amsterdam–New York (1979). [Google Scholar]
  19. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems, vol. I. Springer-Verlag, Heidelberg (1972). [Google Scholar]
  20. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1986) 65–96. [Google Scholar]
  21. G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181. [Google Scholar]
  22. F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence, Rhode Island (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.