Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Article Number S23
Number of page(s) 16
DOI https://doi.org/10.1051/cocv/2020079
Published online 01 March 2021
  1. A. Alvino, V. Ferone and C. Nitsch, A sharp isoperimetric inequality in the plane. J. Eur. Math. Soc. 13 (2010) 185–206. [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000). [Google Scholar]
  3. D.E. Amos, Computation of modified Bessel functions and their ratios. Math. Comput. 28 (1974) 239–251. [Google Scholar]
  4. M. Bareket, On an isoperimetric inequality for the first eigenvalue of a boundary value problem. SIAM J. Math. Anal. 8 (1977) 280–287. [Google Scholar]
  5. T. Bonnesen, Über das isoperimetrische Defizit ebener Figuren. Math. Ann. 91 (1924) 252–268. [Google Scholar]
  6. L. Brasco and G. De Philippis 7 Spectral inequalities in quantitative form. In Shape optimization and spectral theory. Sciendo Migration (2017) 201–281. [Google Scholar]
  7. F. Brock and D. Daners, Conjecture concerning a Faber-Krahn inequality for Robin problems. Vol. 4 of Mini-Workshop: Shape Analysis for Eigenvalues (Organized by: D. Bucur, G. Buttazzo, A. Henrot), Oberwolfach Rep (2007) 1022–1023. [Google Scholar]
  8. D. Bucur and G. Buttazzo, Vol. 65 of Variational methods in shape optimization problems. Springer-Progress in Nonlinear Differential Equations and Their Applications (2004). [Google Scholar]
  9. D. Bucur and S. Cito, Geometric control of the robin Laplacian eigenvalues: the case of negative boundary parameter. J. Geometr. Anal. 30 (2020) 4356–4385. [Google Scholar]
  10. D. Bucur, V. Ferone, C. Nitsch and C. Trombetti, A sharp estimate for the first Robin-Laplacian eigenvalue with negative boundary parameter. Preprint arXiv:1810.06108 (2018). [Google Scholar]
  11. D. Bucur, P. Freitas and J. Kennedy, Shape optimization and spectral theory, in The Robin Problem, edited by A. Henrot. De Gruyter Open, Warsaw (2017) 78–119. [Google Scholar]
  12. S. Cito, Existence and regularity of optimal convex shapes for functionals involving the robin eigenvalues. J. Convex Anal. 26 (2019) 925–943. [Google Scholar]
  13. L. Esposito, N. Fusco and C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 4 (2005) 619–651. [Google Scholar]
  14. V. Ferone, C. Nitsch and C. Trombetti, On a conjectured reverse Faber-Krahn inequality for a Steklov–type Laplacian eigenvalue. Commun. Pure Appl. Anal. 14 (2015) 63–82. [Google Scholar]
  15. P. Freitas and D. Krejčiřík, The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280 (2015) 322–339. [Google Scholar]
  16. B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in ℝn. Trans. Am. Math. Soc. 314 (1989) 619–638. [Google Scholar]
  17. N. Fusco, The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5 (2015) 517–607. [Google Scholar]
  18. N. Gavitone, D.A. La Manna, G. Paoli and L. Trani, A quantitative Weinstock inequality for convex sets. Calc. Var. Partial Differ. Equ. 59 (2020) 2. [Google Scholar]
  19. R. Schneider, Convex bodies: the Brunn–Minkowski theory. Number 151. Cambridge University Press (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.