Issue
ESAIM: COCV
Volume 27, 2021
Special issue in honor of Enrique Zuazua's 60th birthday
Article Number 17
Number of page(s) 30
DOI https://doi.org/10.1051/cocv/2021008
Published online 22 March 2021
  1. M. Badra, Global Carleman inequalities for Stokes and penalized Stokes equations. Math. Control Relat. Fields 1 (2011) 149–175. [Google Scholar]
  2. M. Badra, J.-M. Buchot and L. Thevenet, Méthode de pénalisation pour le contrôle frontière des équations de Navier-Stokes. J. Européen des Systèmes Automatisés (JESA) 45 (2012) 595–630. [Google Scholar]
  3. M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system. SIAM J. Control Optim. 49 (2011) 420–463. [Google Scholar]
  4. H.T. Banks and K. Ito, Approximation in LQR problems for infinite-dimensional systems with unbounded input operators. J. Math. Syst. Estim. Control 7 (1997) 1–34. [Google Scholar]
  5. H.T. Banks and K. Kunisch, The linear regulator problem for parabolic systems. SIAM J. Control Optim. 22 (1984) 684–698. [Google Scholar]
  6. J.A. Bárcena-Petisco, Null controllability of a penalized stokes problem in dimension two with one scalar control. Asymptotic Anal. (2020) 1–38. [Google Scholar]
  7. J.A. Bárcena-Petisco and K. Le Balc’h Local null controllability of the penalized Boussinesq system with a reduced number of controls (2020). Preprint https://hal.archives-ouvertes.fr/hal-02913358.. [Google Scholar]
  8. P. Benner, M. Heinkenschloss, J. Saak and H.K. Weichelt, Efficient solution of large-scale algebraic Riccati equations associated with index-2 daes via the inexact low-rank Newton-Adi method. Appl. Numer. Math. 152 (2020) 338–354. [Google Scholar]
  9. J. Borggaard, J.A. Burns, A. Surana and L. Zietsman, Control, estimation and optimization of energy efficient buildings. In 2009 American Control Conference, IEEE (2009) 837–841. [Google Scholar]
  10. J.A. Burns, X. He and W. Hu, Feedback stabilization of a thermal fluid system with mixed boundary control. Comput. Math. Appl. 71 (2016) 2170–2191. [Google Scholar]
  11. J.-M. Coron, Control and nonlinearity, vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  12. R.F. Curtain and G. Weiss, Well posedness of triples of operators (in the sense of linear systems theory), in Control and estimation of distributed parameter systems (Vorau, 1988). In Vol. 91 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1989) 41–59. [Google Scholar]
  13. E. Fernández-Cara and S. Guerrero, Global carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [Google Scholar]
  14. A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  15. J.S. Gibson, The Riccati integral equations for optimal control problems on Hilbert spaces. SIAM J. Control Optim. 17 (1979) 537–565. [Google Scholar]
  16. P. Grabowski and F.M. Callier, Admissible observation operators. Semigroup criteria of admissibility. Integr. Equ. Oper. Theory 25 (1996) 182–198. [Google Scholar]
  17. F.-K. Hebeker, W. Wendland and M. Crouzeix, The penalty method applied to the instationary Stokes equations. Appl. Anal. 14 (1982) 137–154. [Google Scholar]
  18. M. Heinkenschloss, D.C. Sorensen and K. Sun, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput. 30 (2008) 1038–1063. [Google Scholar]
  19. O.Y. Imanuvilov, J.P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. Ser. B 30 (2009) 333–378. [Google Scholar]
  20. M. Kroller and K. Kunisch, Convergence rates for the feedback operators arising in the linear quadratic regulator problem governed by parabolic equations. SIAM J. Numer. Anal. 28 (1991) 1350–1385. [Google Scholar]
  21. E.-M. Ouhabaz, Analysis of heat equations on domains. In Vol. 31 of London Mathematical Society Monographs. Princeton University Press (2009). [Google Scholar]
  22. A. Pazy,Semigroups of linear operators and applications to partial differential equations. Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
  23. M. Ramaswamy, J.-P. Raymond and A. Roy, Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions. J. Differ. Equ. 266 (2019) 4268–4304. [Google Scholar]
  24. J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations. J. Math. Pures Appl. 87 (2007) 627–669. [Google Scholar]
  25. J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 921–951. [CrossRef] [MathSciNet] [Google Scholar]
  26. T. Reis, Controllability and observability of infinite-dimensional descriptor systems. IEEE Trans. Autom. Control 53 (2008) 929–940. [Google Scholar]
  27. J. Shen, On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29 (1992) 57–77. [Google Scholar]
  28. J. Shen, On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer. Math. 62 (1992) 49–73. [Google Scholar]
  29. H. Sohr, The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel (2001). [Google Scholar]
  30. O. Staffans and G. Weiss, Transfer functions of regular linear systems part ii: the system operator and the Lax–Phillips semigroup. Trans. Am. Math. Soc. 354 (2002) 3229–3262. [Google Scholar]
  31. R. Temam, Une méthode d’approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 96 (1968) 115–152. [Google Scholar]
  32. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Verlag, Basel (2009). [CrossRef] [Google Scholar]
  33. U. Vaidya, R. Rajaram and S. Dasgupta, Actuator and sensor placement in linear advection PDE with building system application. J. Math. Anal. Appl. 394 (2012) 213–224. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.