Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 42
Number of page(s) 29
DOI https://doi.org/10.1051/cocv/2021043
Published online 10 May 2021
  1. F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ. Equ. Appl. 1 (2009) 427–457. [Google Scholar]
  2. F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J. Mathématiques Pures Appl. 96 (2011) 555–590. [Google Scholar]
  3. V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston (1993). [Google Scholar]
  4. C. Bardos and L. Tartar, Sur l’unicité rétrograde des équations parabliques et quelques questions voisines. Arch. Ratl. Mech. Anal. 50 (1973) 10–25. [Google Scholar]
  5. T. Caraballo, I.D. Chueshov and P.E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain. SIAM J. Math. Anal. 38 (2007) 1489–1507. [Google Scholar]
  6. T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 25 (2008) 1–41. [Google Scholar]
  7. M.A. Demetriou, Synchronization and consensus controllers for a class of parabolic distributed parameter systems. Syst. Control Lett. 62 (2013) 70–76. [Google Scholar]
  8. J.M. Coron, Control and Nonlinearity, American Mathematical Society, Providence, RI (2007). [Google Scholar]
  9. E. Fernandez-Cara and S. Guerreo, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [Google Scholar]
  10. C. Huygens, Oeuvres Complètes, Vol. 15, Swets & Zeitlinger B.V., Amsterdam (1967). [Google Scholar]
  11. L. Hu, T-T. Li and B.P. Rao, Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Commun. Pure Appl. Anal. 13 (2014) 881–901. [Google Scholar]
  12. K. Kunisch and L.J. Wang, Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints. J. Math. Anal. Appl. 359 (2012) 114–130. [Google Scholar]
  13. K. Kunisch and L.J. Wang, Time optimal control of the heat equation with pointwise control constraints. ESAIM: COCV 19 (2013) 460–485. [CrossRef] [EDP Sciences] [Google Scholar]
  14. C.-H. Li and S.-Y. Yang, A graph approach to synchronization in complex of asymmetrically nonlinear coupled dynamical systems. J. London Math. Soc. 83 (2011) 711–732. [Google Scholar]
  15. T-T. Li and B.P. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls. Chin. Ann. Math. Ser. B 34 (2013) 139–160. [Google Scholar]
  16. T-T. Li and B.P. Rao, On the state of exact synchronization of a coupled system of wave equations. Comptes Rendus Mathématique-Académie des Sciencs-Paris 352 (2014) 823–829. [Google Scholar]
  17. T-T. Li, B.P. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM: COCV 20 (2014) 339–361. [CrossRef] [EDP Sciences] [Google Scholar]
  18. T-T. Li, B.P. Rao and Y.M. Wei, Generalized exact boundary synchronization for a coupled system of wave equations. Discrete Continu. Dyn. Syst. 34 (2014) 2893–2905. [Google Scholar]
  19. T-T. Li and B.P. Rao, On the exactly synchronizable state to a coupled system of wave equations. Portugaliae Math/ 72 (2015) 83–100. [Google Scholar]
  20. T-T. Li, From phenomena of synchronization to exact synchronization and approximate synchronization for hyperbolic systems. Sci. China Math. 59 (2016) 1–18. [Google Scholar]
  21. X.J. Li and J.M. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995). [Google Scholar]
  22. J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. [Google Scholar]
  23. X.L. Lü, L.J. Wang and Q.S. Yan, Computation of time optimal control problems governed by linear ordinary differential equations. J. Sci. Comput. 73 (2017) 1–25. [Google Scholar]
  24. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983). [Google Scholar]
  25. K.D. Phung and G.S. Wang, An observability estimate for parabolic equations from a measurable set in time and its application. J. Eur. Math. Soc. 15 (2013) 681–703. [Google Scholar]
  26. S.L. Qin and G.S. Wang, Equivalence between minimal time and minimal norm control problems for the heat equation. SIAM J. Control Optim. 56 (2018) 981–1010. [Google Scholar]
  27. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [Google Scholar]
  28. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel (2009). [CrossRef] [Google Scholar]
  29. G.S. Wang, L.J. Wang, Y.S. Xu and Y.B. Zhang, Time Optimal Control of Evolution Equations. Birkhäuser, Cham (2018). [Google Scholar]
  30. G.S. Wang and Y.S. Xu, Equivalence of three different kinds of optimal control problems for heat equations and its applications. SIAM J. Control Optim. 51 (2013) 848–880. [Google Scholar]
  31. G.S. Wang, Y.S. Xu and Y.B. Zhang, Attainable subspaces and the bang-bang property of time optimal controls for heat equations. SIAM J. Control Optim. 53 (2015) 592–621. [Google Scholar]
  32. G.S. Wang and Y.B. Zhang, Decompositions and bang-bang properties. Math. Control Related Fields 7 (2017) 73–170. [Google Scholar]
  33. G.S. Wang and E. Zuazua, On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J. Control Optim. 50 (2012) 2938–2958. [Google Scholar]
  34. L.J. Wang and Q.S. Yan, Optimal control problem for exact synchronization of parabolic system. Math. Control Related Fields 9 (2019) 411–424. [Google Scholar]
  35. L.J. Wang and Q.S. Yan, Exact synchronization and asymptotic synchronization of linear ODEs. To appear in Science China Mathematics.. [Google Scholar]
  36. N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1961). [Google Scholar]
  37. C.W. Wu, Synchronization in Coupled Chaotic Circuits and Systems, World Scientific, Singapore (2002). [Google Scholar]
  38. K. Wu and B.S. Chen, Synchronization of partial differential systems via diffusion coupling. IEEE Trans. Circ. Syst. I 59 (2012) 2655–2668. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.