Open Access
Volume 27, 2021
Article Number 29
Number of page(s) 15
Published online 07 April 2021
  1. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary. SIAM J. Control Optim. 305 (1992) 1024–65. [Google Scholar]
  2. N. Burq, Contrôle de l’équation des ondes dans des ouverts peu réguliers. Asymptotic Anal. 14 (1997) 157–191. [Google Scholar]
  3. N. Burq and P. Gerard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C.R. Acad. Sci. 325 (1997) 749–752. [Google Scholar]
  4. P. Gerard, Microlocal defect measures. Commun. Partial Differ. Equ. 16 (1991) 1761–1794. [Google Scholar]
  5. Y. He, Partial exact controllability for wave equations. Syst. Control Lett. 103 (2017) 45–49. [Google Scholar]
  6. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Classics Math. Reprint of the second 1990 edition. Springer-Verlag, Berlin (2003). [Google Scholar]
  7. G. Lebeau, Contrôle de l’equation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267–291. [Google Scholar]
  8. G. Lebeau, Equation des ondes amorties. Algebraic and Geometric Methods in Mathematical Physics, 73-109, Edited by A. Boutet de Monvel and V. Marchenko. Kluwer Academic, The Netherlands (1996). [Google Scholar]
  9. J. Le Rousseau, G. Lebeau, P. Terpolilli and E. Trelat, Geometric control condition for the wave equation with a time-dependent observation domain. Anal. Partial Differ. Equ. 10 (2017) 983–1015. [Google Scholar]
  10. C. Letrouit, Infinite-time observability of the wave equation with time-varying observation domains under a geodesic recurrence condition. Preprint hal-0210213 (2019). [Google Scholar]
  11. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués. Tome 1, Contrôlabilité exacte. Collection R.M.A 8, Masson (1988). [Google Scholar]
  12. E. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Control and Optim. 32 (1994) 24–34. [Google Scholar]
  13. K. Masuda, A Unique Continuation Theorem for Solutions of the Schrödinger Equations. Proc. Jpn. Acad. 125 (1967) 853–860. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.