Free Access
Issue |
ESAIM: COCV
Volume 27, 2021
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 35 | |
DOI | https://doi.org/10.1051/cocv/2021029 | |
Published online | 30 March 2021 |
- D. Alexander, I. Kim and Y. Yao, Quasi-static evolution and congested crowd transport. Nonlinearity 27 (2014) 823–858. [Google Scholar]
- J.-D. Benamou, G. Carlier and M. Laborde, An augmented Lagrangian approach to Wasserstein gradient flows and applications. ESAIM: PROC. 54 (2016) 1–17. [Google Scholar]
- J.-D. Benamou, G. Carlier, Q. Mérigot and É. Oudet, Discretization of functionals involving the Monge–Ampère operator. Numer. Math. 134 (2016) 611–636. [Google Scholar]
- M. Burger, J.A. Carrillo and M.-T. Wolfram, A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models 3 (2010) 59–83. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44 (1991) 375–417. [Google Scholar]
- J.A. Carrillo, K. Craig, L. Wang and C. Wei, Primal dual methods for Wasserstein gradient flows. Preprint arXiv:1901.08081 (2019). [Google Scholar]
- G. Carlier, V. Duval, G. Peyré and B. Schmitzer, Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal. 49 (2017) 1385–1418. [Google Scholar]
- J.A. Carrillo and J.S. Moll, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput. 31 (2009/10) 4305–4329. [Google Scholar]
- J.A. Carrillo, L. Wang, W. Xu and M. Yan, Variational asymptotic preserving scheme for the Vlasov–Poisson–Fokker–Planck system. Preprint arXiv:2007.01969 (2020). [Google Scholar]
- G. De Philippis, A. Richárd Mészáros, F. Santambrogio and B. Velichkov, BV estimates in optimal transportation and applications. Arch. Ration. Mech. Anal. 219 (2016) 829–860. [Google Scholar]
- L.C. Evans, Partial differential equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition (2010) 829–860. [Google Scholar]
- D.J. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Proc. 529 (1998) 39. [Google Scholar]
- W. Gangbo, An elementary proof of the polar factorization of vector-valued functions. Arch. Ratl. Mech. Anal. 128 (1994) 381–399. [Google Scholar]
- W. Gangbo, Quelques problemes d’analyse non convexe. Habilitation à diriger des recherches en mathématiques. Université de Metz (1995). [Google Scholar]
- W. Gangbo, Quelques problèmes d’analyse non convexe. Habilitation à diriger des recherches en mathématiques. Habilitation, Université de Metz (January 1995). [Google Scholar]
- W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113–161. [Google Scholar]
- G. Isaakovich Barenblatt Scaling, self-similarity, and intermediate asymptotics. With a foreword by Ya. B. Zeldovich. Vol. 14 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1996). [Google Scholar]
- G. Isaakovich Barenblatt, Scaling. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2003). With a foreword by Alexandre Chorin. [Google Scholar]
- R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [Google Scholar]
- M. Jacobs, I. Kim and J. Tong, The L1-contraction principle in optimal transport. Preprint arXiv:2006.09557 (2020). [Google Scholar]
- M. Jacobs and F. Léger, A fast approach to optimal transport: the back-and-forth method. Numer. Math. 146 (2020) 513–544. [Google Scholar]
- H. Leclerc, Q. Mérigot, F. Santambrogio and F. Stra, Lagrangian discretization of crowd motion and linear diffusion. SIAM J. Numer. Anal. 58 (2020) 2093–2118. [Google Scholar]
- Y. Lucet, Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Algor. 16 (1997) 171–185. [Google Scholar]
- Y. Nesterov, Vol. 87 of Introductory lectures on convex optimization: A basic course. Springer Science & Business Media (2013). [Google Scholar]
- F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174. [Google Scholar]
- G. Peyré, Entropic approximation of Wasserstein gradient flows. SIAM J. Imag. Sci. 8 (2015) 2323–2351. [CrossRef] [Google Scholar]
- F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling. Vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2015). [CrossRef] [Google Scholar]
- J.L. Vázquez, The porous medium equation: mathematical theory. Oxford University Press (2007). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.