Issue
ESAIM: COCV
Volume 27, 2021
Special issue in honor of Enrique Zuazua's 60th birthday
Article Number 2
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2020084
Published online 20 January 2021
  1. E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. [Google Scholar]
  2. E. Casas, A review on sparse solutions in optimal control of partial differential equations. SEMA J. 74 (2017) 319–344. [CrossRef] [Google Scholar]
  3. E. Casas, The influence of the Tikhonov term in optimal control of partial differential equations. In Vol. 17 of SEMA SIMAI Springer Series (2018). [Google Scholar]
  4. E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. [Google Scholar]
  5. E. Casas, C. Clason and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28–63. [Google Scholar]
  6. E. Casas, R. Herzog and G. Wachsmuth, Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122 (2012) 645–669. [Google Scholar]
  7. E. Casas, R. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with L1 cost functional. SIAM J. Optim. 22 (2012) 795–820. [Google Scholar]
  8. E. Casas, R. Herzog and G. Wachsmuth, Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations. ESAIM: COCV 23 (2017) 263–295. [Google Scholar]
  9. E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52 (2014) 339–364. [Google Scholar]
  10. E. Casas and K. Kunisch, Parabolic control problems in space-time measure spaces. ESAIM: COCV 22 (2016) 355–370. [Google Scholar]
  11. E. Casas and F. Tröltzsch, Second-order and stability analysis for state-constrained elliptic optimal control problems with sparse controls. SIAM J. Control Optim. 52 (2014) 1010–1033. [Google Scholar]
  12. E. Casas and F. Tröltzsch, Optimal sparse boundary control for a semilinear parabolic equation with mixed control-state constraints. Control Cybern. 48 (2019) 89–124. [Google Scholar]
  13. E. Casas and F. Tröltzsch, Sparse optimal control for the heat equation with mixed control-state constraints. Math. Control Relat. Fields 10 (2020) 471–491. [CrossRef] [Google Scholar]
  14. E. Casas, B. Vexler and E. Zuazua, Sparse initial data identification for parabolic PDE and its finite element approximations. Math. Control Relat. Fields 5 (2015) 377–399. [CrossRef] [Google Scholar]
  15. E. Casasand E. Zuazua, Spike controls for elliptic and parabolic PDE. Systems Control Lett. 62 (2013) 311–318. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266. [Google Scholar]
  17. C. Clason and K. Kunisch, A measure space approach to optimal source placement. Comput. Optim. Appl. 53 (2012) 155–171. [Google Scholar]
  18. C. Clason and A. Schiela, Optimal control of elliptic equations with positive measures. ESAIM: COCV 23 (2017) 217–240. [Google Scholar]
  19. E. Di Benedetto On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Sup. Pisa, Ser. I 13 (1986) 487–535. [Google Scholar]
  20. A. Dmitruk, Maximum principle for the general optimal control problem with phase and regular mixed constraints. Comput. Math. Model. 4 (1993) 364–377. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin Heidelberg (1983). [Google Scholar]
  22. R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. [Google Scholar]
  23. A.D. Ioffe and V.M. Tihomirov, Theory of extremal problems. North-Holland Publishing Co., Amsterdam (1979). [Google Scholar]
  24. K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. [Google Scholar]
  25. C. Meyer and F. Tröltzsch, On an elliptic optimal control problem with pointwise mixed control-state constraints, In Recent Advances in Optimization, edited by A. Seeger. Proceedings of the 12th French-German-Spanish Conference on Optimization held in Avignon, September 20-24, 2004, volume 563 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag (2006). [Google Scholar]
  26. K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788–2808. [Google Scholar]
  27. J.-P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discr. Continu. Dyn. Syst. 6 (2000) 431–450. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Rösch and F. Tröltzsch, On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints. SIAM J. Control Optim. 46 (2007) 1098–1115. [Google Scholar]
  29. R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Math. Surv. and Monogr. American Mathematical Society, Providence, RI (1997). [Google Scholar]
  30. G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181. [Google Scholar]
  31. F. Tröltzsch, A minimum principle and a generalized bang-bang-principle for a distributed optimal control problem with constraints on the control and the state. ZAMM 59 (1979) 737–739. [CrossRef] [Google Scholar]
  32. F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, in Vol. 112. American Math. Society, Providence (2010). [Google Scholar]
  33. F. Tröltzsch and D. Wachsmuth, On the switching behavior of sparse optimal controls for the one-dimensional heat equation. Math. Control Related Fields (MCRF) 8 (2018) 135–153. [CrossRef] [Google Scholar]
  34. G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional. ESAIM: COCV 17 (2011) 858–886. [Google Scholar]
  35. K. Yosida and E. Hewitt, Finitely additive measures. Trans. Am. Math. Soc. 72 (1952) 46–66. [Google Scholar]
  36. J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.