Volume 27, 2021
Special issue in honor of Enrique Zuazua's 60th birthday
Article Number 50
Number of page(s) 30
Published online 04 June 2021
  1. F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dyn. 1 (1990) 303–325. [Google Scholar]
  2. L.J. Álvarez-Vázquez, N. García-Chan, A. Martínez and M.E. Vázquez-Méndez, Multi-objective Pareto-optimal control: an application to wastewater management. Comput. Optim. Appl. Berlin 46 (2010) 135–157. [Google Scholar]
  3. J.L. Boldrini, B.M.R. Calsavara and E. Fernández-Cara, Some optimal control problems for a two-phase field model of solidification. Rev. Mat. Complut. 23 (2010) 49–75. [Google Scholar]
  4. J.L. Boldrini, E. Fernández-Cara and M.A. Rojas-Medar, An optimal control problem for a generalized Boussinesq Model: the time dependent case. Rev. Mat. Complut. 20 (2007) 339–366. [Google Scholar]
  5. H. Brézis, Functional Analysis, Sobolev Sapces and Partial Differential Equations. Springer, New York, Dordrecht, Heidelberg, London (2011). [Google Scholar]
  6. P.P. Carvalho and E. Fernández-Cara, On the computation of Nash and pareto equilibria for some bi-objective control problems. J. Sci. Comput. 78 (2019) 246–273. [Google Scholar]
  7. Ph.E. Ciarlet, Introduction to numerical linear algebra and optimisation. Cambridge University Press, Cambridge (1989). [Google Scholar]
  8. C. Fabre, Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems. Control Optim. Calc. Variat. 1 (1996) 267–302. [Google Scholar]
  9. T.M. Flett, Differential analysis: Differentiation, differential equations and differential inequalities. Cambridge University Press, Cambridge (1980). [Google Scholar]
  10. A.V. Fursikov, Optimal Control of Distributed Systems: Theory and Applications. American Mathematical Society Boston, MA, USA (2000). [Google Scholar]
  11. I.V. Girsanov, Lectures on mathematical theory of extremum problems. Vol. 67 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin (1972). [CrossRef] [Google Scholar]
  12. R. Glowinski, Finite element methods for incompressible viscous flow. Vol. 9 of Handbook of Numerical Analysis. North-Holland, Amsterdam, (2003) 3–1176. [Google Scholar]
  13. R. Glowinski and O. Pironneau, Finite element methods for Navier-Stokes equations. Annu. Rev. Fluid Mech. 24 (1992) 167–204. [Google Scholar]
  14. F. Hecht, [Google Scholar]
  15. J.-L. Lions, Contrôle de Pareto de systèmes distribués. Le cas d’évolution. C.R. Acad. Sci. Paris, Sr. I 302 (1986) 413–417. [Google Scholar]
  16. J.-L. Lions, Optimal control of systems governed by partial differential equations. Springer-Verlag, New York (1971). [Google Scholar]
  17. J.-L. Lions, Some remarks on Stackelberg optimization. Math. Models Methods Appl. Sci. 4 (1994) 477–487. [Google Scholar]
  18. J.F. Nash, Noncooperative games. Ann. Math. 54 (1951) 286–295. [Google Scholar]
  19. V. Pareto, Cours d’économie politique. Rouge, Laussane, Switzerland (1896). [Google Scholar]
  20. E. Polak, Optimization. Algorithms and consistent approximation. Springer-Verlag, New York (1997). [Google Scholar]
  21. A. Ramos, R. Glowinski and J. Périaux, Nash equilibria for the multiobjective control of linear partial differential equations. J. Optim. Theory Appl. 112 (2002) 457–498. [Google Scholar]
  22. A. Ramos, R. Glowinski and J. Périaux, Pointwise control of the Burgers equation and related Nash equilibrium problems. Comput. Approach: J. Optim. Theory Appl. 112 (2002) 499–516. [Google Scholar]
  23. R. Temam, Navier-Stokes equations. Theory and numerical analysis. AMS Chelsea Pub., Providence (2001). [Google Scholar]
  24. H. Von Stalckelberg, Marktform und gleichgewicht. Springer, Berlin, Germany (1934). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.