Free Access
Volume 27, 2021
Article Number 49
Number of page(s) 24
Published online 04 June 2021
  1. J.M. Ball, A version of the fundamental theorem for Young measures. In M. Rascle, D. Serre and M. Slemrod, editors, PDEs and Continuum Models of Phase Transitions. Springer Berlin Heidelberg (1989) 207–215. [Google Scholar]
  2. V.G. Boltyanskiĭ, R.V. Gamkrelidze and L.S. Pontryagin, On the theory of optimal processes. Dokl. Akad. Nauk SSSR (N.S.) 110 (1956) 7–10. [Google Scholar]
  3. J.F. Bonnans, On an algorithm for optimal control using Pontryagin’s maximum principle. SIAM J. Control Optim. 24 (1986) 579–588. [Google Scholar]
  4. A. Borzì, Modelling with Ordinary Differential Equations: A Comprehensive Approach. Chapman & Hall/CRC, Abingdon and Boca Raton (2020). [Google Scholar]
  5. T. Breitenbach and A. Borzì, A sequential quadratic Hamiltonian scheme for solving non-smooth quantum control problems with sparsity. J. Comput. Appl. Math. 369 (2020) 112583. [Google Scholar]
  6. T. Breitenbach and A. Borzì, On the SQH scheme to solve nonsmooth PDE optimal control problems. Numer. Funct. Anal. Optim. 40 (2019) 1489–1531. [Google Scholar]
  7. T. Breitenbach and A. Borzì, A sequential quadratic Hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals. J. Dyn. Control Syst. 25 (2019) 403–435. [Google Scholar]
  8. C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces: With Applications in Control Theory and Probability Theory. Springer, Netherlands (2004). [Google Scholar]
  9. F.L. Chernous’ko and A.A. Lyubushin, Method of successive approximations for solution of optimal control problems. Optim. Control Appl. Methods 3 (1982) 101–114. [Google Scholar]
  10. M. Claeys, D. Arzelier, D. Henrion and J.-B. Lasserre, Moment LMI approach to LTV impulsive control. In 52nd IEEE Conference on Decision and Control (2013) 5810–5815. [Google Scholar]
  11. M. Claeys, D. Henrion and M. Kruẑík, Semi-definite relaxations for optimal control problems with oscillation and concentration effects. ESAIM: COCV 23 (2017) 95–117. [EDP Sciences] [Google Scholar]
  12. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. Tata McGraw-Hill, New Delhi (1955). [Google Scholar]
  13. I. Csiszar, I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975) 146–158. [Google Scholar]
  14. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, New York (2007). [Google Scholar]
  15. H.O. Fattorini, Infinite Dimensional Optimization and Control Theory. Cambridge University Press, New York (1999). [Google Scholar]
  16. M. Hale, Y. Wardi, H. Jaleel and M. Egerstedt, Hamiltonian-based algorithm for optimal control. Preprint arXiv:1603.02747 (2016). [Google Scholar]
  17. D. Henrion, M. Kruẑík and T. Weisser, Optimal control problems with oscillations, concentrations and discontinuities. Automatica 103 (2019) 159–165. [Google Scholar]
  18. B. Järmark, A new convergence control technique in differential dynamic programming. Technical Report TRITA-REG-7502, The Royal Institute of Technology, Stockholm, Sweden, Department of Automatic Control (1975). [Google Scholar]
  19. M. Kruẑík and T. Roubíčk, Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation. Numer. Funct. Anal. Optim. 20 (1999) 511–530. [Google Scholar]
  20. I.A. Krylov and F.L. Chernous’ko, On a method of successive approximations for the solution of problems of optimal control. USSR Comput. Math. Math. Phys. 2 (1963) 1371–1382. Transl. of Zh. Vychisl. Mat. Mat. Fiz., 1962, Vol. 2, Nr. 6, 1132–1139. [Google Scholar]
  21. I.A. Krylov and F.L. Chernous’ko, An algorithm for the method of successive approximations in optimal control problems. USSR Comput. Math. Math. Phys. 12 (1972) 15–38. [Google Scholar]
  22. S. Kullback and R.A. Leibler, On information and sufficiency. Ann. Math. Statist. 22 (1951) 79–86. [Google Scholar]
  23. J.B. Lasserre, D. Henrion, C. Prieur and E. Trélat, Nonlinear optimal control via occupation measures and LMI-relaxations. SIAM J. Control Optim. 47 (2008) 1643–1666. [Google Scholar]
  24. S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models. Chapman & Hall/CRC, Boca Raton (2007). [Google Scholar]
  25. P. Pedregal, Parametrized Measures and Variational Principles. Progress in nonlinear differential equations and their applications. Birkhäuser (1997). [Google Scholar]
  26. L.S. Pontryagin, V.G. Boltyanskiĭ, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes. John Wiley & Sons, New York-London (1962). [Google Scholar]
  27. R.T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976) 877–898. [Google Scholar]
  28. T. Roubiček, Relaxation in Optimization Theory and Variational Calculus. De Gruyter, Berlin and New York (1997). [Google Scholar]
  29. Y. Sakawa and Y. Shindo, On global convergence of an algorithm for optimal control. IEEE Trans. Autom. Control 25 (1980) 1149–1153. [Google Scholar]
  30. Y. Shindo and Y. Sakawa, Local convergence of an algorithm for solving optimal control problems. J. Optim. Theory Appl. 46 (1985) 265–293. [Google Scholar]
  31. J. Thomas and T.M. Cover, Elements of Information Theory. Wiley- (2012). [Google Scholar]
  32. Y. Wardi, M. Egerstedt and M. Qureshi, Hamiltonian-based algorithm for relaxed optimal control. In 55nd IEEE Conference on Decision and Control (2016) 7222–7227. [Google Scholar]
  33. J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York (1972). [Google Scholar]
  34. L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory. W.B. Saunders Company, Philadelphia (1969). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.