Free Access
Volume 27, 2021
Article Number 32
Number of page(s) 52
Published online 30 April 2021
  1. A.A. Agrachev, Rolling balls and octonions. Proc. Steklov Inst. Math. 258 (2007) 13–22. [Google Scholar]
  2. A. Agrachev and D. Barilari, Sub-Riemanian structures on 3D Lie groups. J. Dyn. Control Syst. 18 (2012) 21–44. [Google Scholar]
  3. A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge University Press (2019). [Google Scholar]
  4. A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004). [Google Scholar]
  5. A.D. Alexandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 6 (1939) 3–35. [Google Scholar]
  6. D.J. Balkcom and M.T. Mason, Extremal trajectories for bounded velocity mobile robots. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292) 2 (2002) 1747–1752. [Google Scholar]
  7. D.J. Balkcom and M.T. Mason, Time Optimal Trajectories for Bounded Velocity Differential Drive Vehicles. Int. J. Robotics Res. 21 (2002) 199–217. [Google Scholar]
  8. A. Bellaiche and J. Risler, Sub-Riemannian geometry. Progr. Math. 144 (1996). [Google Scholar]
  9. V.N. Berestovskii, Homogeneous manifolds with an intrinsic metric. II. Sib. Math. J. 30 (1989) 180–191. [Google Scholar]
  10. V.N. Berestovskii, Geodesics of nonholonomic left-invariant intrinsic metrics on the Heisenberg group and isoperimetric curves on the Minkowski plane. Sib. Math. J. 35 (1994) 1–8. [Google Scholar]
  11. V.N. Berestovskii, I.A. Zubareva, Shapes of spheres of special nonholonomic left-invariant intrinsic metrics on some Lie groups. Sib. Math. J. 42 (2001) 613–628. [Google Scholar]
  12. I.Yu. Beschastnyi and Yu.L. Sachkov, Geodesics in the sub-Riemannian problem on the group SO(3). Sbornik Math. 207 (2016) 29–56. [Google Scholar]
  13. U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. [Google Scholar]
  14. U. Boscain, R. Duits, F. Rossi and Yu. Sachkov, Curve cuspless reconstruction via sub-Riemannian geometry. ESAIM: COCV 20 (2014) 748–770. [EDP Sciences] [Google Scholar]
  15. U. Boscain, T. Chambrion and G. Charlot, Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimumenergy. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 957–990. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Breuillard and E. Le Donne, On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry. Proc. Natl. Acad. Sci. USA 110 (2013) 19220–19226. [Google Scholar]
  17. H. Busemann, The Isoperimetric Problem in the Minkowski Plane. Am. J. Math. 69 (1947) 863–871. [Google Scholar]
  18. Y.A. Butt, Yu.L. Sachkov and A.I. Bhatti, Extremal trajectories and Maxwell strata in sub-Riemannian problem on group of motions of pseudo-Euclidean plane. JDCS 20 (2014) 341–364. [Google Scholar]
  19. Y.A. Butt, Yu.L. Sachkov and A.I. Bhatti, Maxwell strata and conjugate points in sub-Riemannian problem on the Lie group SH(2). JDCS 22 (2016) 747–770. [Google Scholar]
  20. Y.A. Butt, Yu.L. Sachkov and A.I. Bhatti, Cut locus and optimal synthesis in sub-Riemannian problem on the lie group SH(2). JDCS 23 (2017) 155–195. [Google Scholar]
  21. H. Chitsaz, S.M. LaValle, D.J. Balkcom and M.T. Mason, Minimum wheel-rotation paths for differential-drive mobile robots. Proceedings 2006 IEEE International Conference on Robotics and Automation (2006) 1616–1623. [Google Scholar]
  22. R.C. Dalang, F. Dumas, S. Sardy, S. Morgenthaler and J. Vila, Stochastic optimization of sailing trajectories in an upwind regatta. J. Oper. Res. Soc. 66 (2015) 807–821. [Google Scholar]
  23. L.E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79 (1957) 497–516. [Google Scholar]
  24. L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimitrici latissimo sensu accepti. Lausanne: Bousquet (1744). [Google Scholar]
  25. D.S. Ferguson and P. Elinas, A Markov Decision Process Model for Strategic Decision Making in Sailboat Racing. Advances in Artificial Intelligence. Canadian AI. In vol. 6657 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg (2011) 110–121. [Google Scholar]
  26. A.F. Filippov, Differential equations with discontunuous righthand sides. Kluwer (1988). [Google Scholar]
  27. I.A. Gribanova, The quasihyperbolic plane. Sib. Math. J. 40 (1999) 245–257. [Google Scholar]
  28. N. Jacobson, Lie Algebras. Interscience (1962). [Google Scholar]
  29. V. Jurdjevic, The geometry of the plate-ball problem. Arch. Rat. Mech. Anal. 124 (1993) 305–328. [Google Scholar]
  30. V. Jurdjevic and J. Zimmerman, Rolling Problems on Spaces of Constant Curvature. Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, edited by F. Allgüwer et al. In Vol. 366 of Lecture Notes in Control and Information Sciences (2007). [Google Scholar]
  31. L.V. Lokutsievskiy, Convex trigonometry with applications to sub-Finsler geometry. Sb. Math. 210 (2019) 1179–1205. [Google Scholar]
  32. L.V. Lokutsievskiy, Explicit formulae for geodesics in left invariant sub-Finsler problems on Heisenberg groups via convex trigonometry. To appear J. Dyn. Control Syst.. [Google Scholar]
  33. A.A. Markov, Some examples of the solution of a special kind of problem on greatest and least quantities, Soobshch. Kharkovsk. Mat. Obshch. 1 (1887) 250–276 (in Russian). [Google Scholar]
  34. I. Moiseev and Yu.L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 380–399. [CrossRef] [EDP Sciences] [Google Scholar]
  35. R. Montgomery, A tour of subriemannnian geometries, their geodesics and applications. Am. Math. Soc. (2002). [Google Scholar]
  36. A. Philpott and A. Mason, Optimising Yacht Routes under Uncertainty. Proceedings of the 15th Chesapeake Sailing Yacht Symposium, Annapolis, Maryland, USA. P2001-5. [Google Scholar]
  37. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Wiley Interscience (1962). [Google Scholar]
  38. M. Rabaud, Optimal routing in sailing. Proceeding of the conference Sports Physics, June 8-10, Palaiseau, France (2016). [Google Scholar]
  39. J.A. Reeds and L.A. Shepp, Optimal paths for a car that goes both forwards and backwards. Pacific J. Math. 145 (1990) 367–393. [Google Scholar]
  40. R.T. Rockafellar, Convex Analysis. Princeton University Press (1997). [Google Scholar]
  41. Yu.L. Sachkov, Conjugate and cut time in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 1018–1039. [CrossRef] [EDP Sciences] [Google Scholar]
  42. Yu.L. Sachkov, Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 17 (2011) 293–321. [CrossRef] [EDP Sciences] [Google Scholar]
  43. A. Sarti, G. Citti and J. Petitot, The symplectic structure of the primary visual cortex. Biol. Cybernet. 98 (2008) 33–48. [Google Scholar]
  44. D. Shelupsky, A generalization of the trigonometric functions. Am. Math. Monthly 66 (1959) 879–884. [Google Scholar]
  45. A.M. Vershik and V.Ya. Gershkovich, Nonholonomic dynamical systems. geometry of distributions and variational problems. Itogi Nauk. i Tekhn. Sovrem. Probl. Mat. Fund. Napravl. Dinam. Sistem. 7 (1986) 5–85 (In Russian). [Google Scholar]
  46. D. Wei, Y. Liu and M.B. Elgindi, Some generalized trigonometric sine functions and their applications. Appl. Math. Sci. 6 (2012) 6053–6068. [Google Scholar]
  47. R. Zarate-Minano, M. Anghel and F. Milano, Continuous wind speed models based on stochastic differential equations. Appl. Energy 104 (2013) 42–49. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.