Open Access
Volume 27, 2021
Article Number 75
Number of page(s) 35
Published online 13 July 2021
  1. J. Allwright and R. Vinter, Second order conditions for periodic optimal control problems. Control Cybernet. 34 (2005) 617–643. [Google Scholar]
  2. M.S. Aronna, J.F. Bonnans, A.V. Dmitruk and P.A. Lotito, Quadratic order conditions for bang-singular extremals Numer. Algebra Control Optim. 2 (2012) 511–546. [Google Scholar]
  3. M. Bohner, Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl. 199 (1996) 804–826. [Google Scholar]
  4. V.G. Boltyanskii, Sufficient conditions for optimality and the justification of the dynamic programming method. SIAM J. Control Optim. 4 (1966) 326–361. [Google Scholar]
  5. J.F. Bonnans, X. Dupuis and L. Pfeiffer, Second-order necessary conditions in Pontryagin form for optimal control problems. SIAM J. Control Optim. 52 (2014) 3887–3916. [Google Scholar]
  6. L. Bourdin and E. Trélat, Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales. SIAM J. Control Optim. 51 (1996) 3781–3813. [Google Scholar]
  7. L. Bourdin and E. Trélat, Optimal sampled-data control, and generalizations on time scales. Math. Control. Relat. Fields 6 (1996) 53–94. [Google Scholar]
  8. H.I. Dwyer, Eigenvalues of Matrix Sturm–Liouville Problems with Separated or Coupled Boundary Conditions. Ph.D. dissertation, Northern Illinois University, DeKalb, IL (1993). [Google Scholar]
  9. H.I. Dwyer and A. Zettl, Computing eigenvalues of regular Sturm–Liouville problems. Electr. J. Differ. Equ. 1994 (1996) 10 pp. [Google Scholar]
  10. J.V. Elyseeva and R. Šimon Hilscher, Discrete oscillation theorems for symplectic eigenvalue problems with general boundary conditions depending nonlinearly on spectral parameter. Linear Algebra Appl. 558 (1996) 108–145. [Google Scholar]
  11. W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control, Applications of Mathematics, No. 1. Springer-Verlag, Berlin-New York (1996). [Google Scholar]
  12. R. Hilscher and V. Růžičková, Riccati inequality and other results for discrete symplectic systems. J. Math. Anal. Appl. 322 (1996) 1083–1098. [Google Scholar]
  13. R. Hilscher and V. Zeidan, Symplectic difference systems: variable stepsize discretization and discrete quadratic functionals. Linear Algebra Appl. 367 (1996) 67–104. [Google Scholar]
  14. R. Hilscher and V. Zeidan, Applications of time scale symplectic systems without normality. J. Math. Anal. Appl. 340 (1996) 451–465. [Google Scholar]
  15. R. Hilscher and V. Zeidan, Time scale embedding theorem and coercivity of quadratic functionals. Analysis (Munich) 28 (1996) 1–28. [Google Scholar]
  16. R. Hilscher and V. Zeidan, Riccati equations for abnormal time scale quadratic functionals. J. Differ. Equ. 244 (1996) 1410–1447. [Google Scholar]
  17. R. Hilscher and V. Zeidan, Weak maximum principle and accessory problem for control problems on time scales. Nonlinear Anal. 70 (1996) 3209–3226. [Google Scholar]
  18. D.H. Jacobson, Extensions of Linear-Quadratic Controls, Optimization and Matrix Theory, Vol. 133 of Mathematics in Science and Engineering. Academic Press, London – New York – San Francisco (1996). [Google Scholar]
  19. R.E. Kalman, The theory of optimal control and the calculus of variations. In Mathematical Optimization Techniques”, Symposium on Mathematical Optimization Techniques, Santa Monica, CA, 1960, edited by R. Bellman. Univ. California Press, Berkeley, CA (1996) 309–331. [Google Scholar]
  20. W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Vol. 6 of Mathematical Topics. Akademie Verlag, Berlin (1996). [Google Scholar]
  21. D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading, MA (1996) 2nd edn. [Google Scholar]
  22. K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints. Comput. Optim. Appl. 5 (1996) 253–283. [Google Scholar]
  23. H. Maurer, Sufficient conditions and sensitivity analysis for economic control problems in “Optimal Control and Differential Games” (Vienna, 1997). Ann. Oper. Res. 88 (1996) 3–14. [Google Scholar]
  24. H. Maurer and H.J. Pesch, Solution differentiability for nonlinear parametric control problem. SIAM J. Control Optim. 32 (1996) 1542–1554. [Google Scholar]
  25. H. Maurer and H.J. Pesch, Solution differentiability for parametric nonlinear control problems with control-state constraints. J. Optim. Theory Appl. 86 (1996) 285–309. [Google Scholar]
  26. H. Maurer and S. Pickenhaim, Second-order sufficient conditions for control problems with mixed control-state constraints. J. Optim. Theory Appl. 86 (1996) 649–667. [Google Scholar]
  27. D. Orrell and V. Zeidan, Another Jacobi sufficiency criterion for optimal control with smooth constraints. J. Optim. Theory Appl. 58 (1996) 283–300. [Google Scholar]
  28. N.P. Osmolovskii, Sufficient quadratic conditions of extremum for discontinuous controls in optimal control problems with mixed constraints. J. Math. Sci. (N.Y.) 173 (1996) 1–106. [Google Scholar]
  29. L. Poggiolini and G. Stefani, Bang-singular-bang extremals: sufficient optimality conditions. J. Dyn. Control Syst. 17 (1996) 469–514. [Google Scholar]
  30. R. Šimon Hilscher, Eigenvalue theory for time scale symplectic systems depending nonlinearly on spectral parameter. Appl. Math. Comput. 219 (1996) 2839–2860. [Google Scholar]
  31. R. Šimon Hilscher and V. Zeidan, Hamilton–Jacobi theory over time scales and applications to linear-quadratic problems. Nonlinear Anal. 75 (1996) 932–950. [Google Scholar]
  32. R. Šimon Hilscher and V. Zeidan, Oscillation theorems and Rayleigh principle for linear Hamiltonian and symplectic systems with general boundary conditions. Appl. Math. Comput. 218 (1996) 8309–8328. [Google Scholar]
  33. R. Šimon Hilscher and V. Zeidan, Sufficiency and sensitivity for nonlinear optimal control problems on time scales via coercivity. ESAIM: COCV 24 (1996) 1705–1734. [Google Scholar]
  34. R. Šimon Hilscher and P. Zemánek, Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints. Adv. Differ. Equ. 2013 (1996) 232.. [Google Scholar]
  35. J.L. Speyer and D.H. Jacobson, Primer on Optimal Control Theory, Vol. 20 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2010). [Google Scholar]
  36. G. Stefani and P. Zezza, Constrained regular LQ-control problems. SIAM J. Control Optim. 35 (1996) 876–900. [Google Scholar]
  37. R. Vinter, Optimal Control, Systems & Control: Foundations & Applications, Birkhäuser, Boston, MA (1996). [Google Scholar]
  38. V. Zeidan, Sufficiency conditions with minimal regularity assumptions. Appl. Math. Optim. 20 (1996) 19–31. [Google Scholar]
  39. V. Zeidan, The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency. SIAM J. Control Optim. 32 (1996) 1297–1321. [Google Scholar]
  40. V. Zeidan, New second-order optimality conditions for variational problems with C2-Hamiltonians. SIAM J. Control Optim. 40 (1996) 577–609. [Google Scholar]
  41. V. Zeidan and P. Zezza, Normality for the problem of Bolza with an inequality state constraint Geoffrey J. Butler Memorial Conference in Differential Equations and Mathematical Biology (Edmonton, AB, 1988). Rocky Mountain J. Math. 20 (1996) 1235–1248. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.